Electricity: motive power systems – Motor-reversing
Reexamination Certificate
2000-04-14
2002-08-13
Masih, Karen (Department: 2837)
Electricity: motive power systems
Motor-reversing
C378S138000, C378S201000, C378S017000, C378S016000, C378S169000, C378S169000
Reexamination Certificate
active
06433498
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to window covering peripherals and more particularly to remotely-controlled window coverings.
BACKGROUND
Louvered blinds, such as Levellor® mini-blinds, are used as window coverings in a vast number of business buildings and dwellings. The typical blind has a number of horizontal elongated parallelepiped-shaped louvers, i.e., rotationally-movable slats, which are collectively oriented with their major surfaces parallel to the ground (“open”) to permit light to pass between adjacent slats, or with their major surfaces perpendicular to the ground (“closed”), to block light from passing between adjacent slats, or any intermediate position between open and closed. Stated differently, the slats can be rotated about their respective longitudinal axes, i.e., about respective lines which are parallel to the ground, to open or close the blind. Alternatively, the slats may be oriented vertically for rotation about their respective longitudinal axes (i.e., for rotation about respective lines that are perpendicular to the ground), for opening and closing the blind.
Ordinarily, to provide for movement of the slats of a blind between the open and closed positions, an elongated actuating baton is coupled to structure on the blind such that when the baton is manually rotated about its longitudinal axis, the slats move in unison between the open and closed positions. It will accordingly be appreciated that by proper manual operation of the baton, blinds can be used to effectively regulate the amount of light which passes into the room in which the blind is located. Thus, blinds can be opened during the day to permit sunlight to enter the room, or closed during particularly warm days to prevent overheating of the room. Likewise, blinds can be closed at night for security purposes, and to prevent heat within the room from dissipating through the window into the cool evening air.
While most existing manually-operated blinds accordingly provide an effective means for regulating the amount of light propagating into or out of a room, it is often advantageous to provide for remote or automatic positioning of the blinds. For example, it would be advantageous to provide for the automatic nighttime closing of blinds in a business premises, for both security reasons and energy conservation, rather than to rely on personnel to remember to manually close all blinds before vacating the premises for the evening. Also, remote operation of blinds would enable many invalid persons to regulate the amount of light entering their rooms, without requiring the persons to manually operate the actuating baton.
Not surprisingly, several systems have been introduced for either lowering and raising the slats of a blind, or for moving the slats between the open and closed positions. For example, U.S. Pat. No. 4,644,990 to Webb, Sr. et al. teaches a system for automatically moving a set of venetian-type window blinds in response to sensing a predetermined level of sunlight. Likewise, U.S. Pat. No. 3,860,055 to Wild teaches a system for automatically raising or lowering a shutter upon sensing a predetermined level of sunlight. Also, U.S. Pat. No. 4,096,903 to Ringle, III discloses a system for opening a blind, wherein the Ringle, III system is mounted in the head rail of the blind and operates the blind in response to an electromagnetic control signal.
Unfortunately, the systems mentioned above, like many, if not most, automatic blind control systems, are somewhat complicated in operation and cumbersome and bulky in installation, and consequently are relatively expensive. For example, the Webb, Sr. et al. system requires that a housing be mated with the blind structure for holding the various components of the patented system, which includes, inter alia, ratchets, pawls, gears, clutches, levers, and springs. In a similar vein, the Wild invention requires the use of, among other components, a rather bulky gas-driven piston-and-cylinder to raise and lower the shutter. Precisely how the piston-and-cylinder is mounted on an existing shutter assembly is not discussed by Wild. The Ringle, III device consumes a relatively large amount of power to sense its control signal, and thus exhausts its battery quickly, in part because of its relatively complicated limit switch mechanism and because Ringle, III does not provide any electronic signal processing which would enable the Ringle, III device to sense a control signal efficiently, with little power consumption.
Accordingly, it is an object of the present invention to provide a comparatively simple device for opening and closing mini-blinds. It is another object of the present invention to provide a remote control device for opening and closing blinds which is compact and easy to install. Yet another object of the present invention is to provide a device for remotely and automatically opening and closing blinds. Still another object of the present invention is to provide a device for remotely and automatically opening and closing mini-blinds which consumes relatively little power. Further, it is an object of the present invention to provide a device for remotely and automatically opening and closing mini-blinds which is easy to use and cost-effective to manufacture. Another object of the present invention to provide a device for remotely operating vertical blinds and pleated, cellular, and roll-up shades.
SUMMARY OF THE INVENTION
An actuator is disclosed for rotating the actuating baton of a mini-blind to open or close the slats of the mini-blind. Typically, the mini-blind is mounted adjacent a surface, e.g., a window sill.
The actuator of the present invention includes an electric motor which is operably engaged with a coupling, and the coupling is engageable with the baton substantially anywhere along the length of the baton. A housing is provided for holding the motor, and a fastening element is attached to the housing and is connectable to a nearby surface, e.g., the window frame or the head rail of the blind, to prevent relative motion between the surface and the housing. At least one direct current (dc) battery is mounted in the housing and is electrically connected to the motor for selectively energizing the motor to rotate the baton. This at least one battery can be an alkaline battery or a nine volt lithium battery, either one of which is a primary dc battery.
Preferably, the rotor of the motor is connected to a gear assembly, and the gear assembly in turn is connected to the coupling. The coupling has a channel configured for closely receiving the baton. In the presently preferred embodiment, the gear assembly includes a plurality of reduction gears for causing the baton to rotate at a fraction of the angular velocity of the rotor, and a rack gear for operating a limit switch to deactivate the motor when the blind is in a predetermined configuration.
In one presently preferred embodiment, a power switch is mounted in the housing and is electrically connected between the battery and the motor. Preferably, the power switch is an electronic circuit for sensing a control signal with comparatively little expenditure of the battery energy. As intended by the present invention, the power switch has an open configuration, wherein the electrical circuit from the battery to the motor is incomplete, and a closed configuration, wherein the electrical circuit from the battery to the motor is complete.
To provide for remote operation of the actuator, the power switch is moved between the open and closed configurations by a control signal. In one embodiment, this control signal is generated by a daylight sensor which is electrically connected to the switch. The daylight sensor generates the control signal in response to a predetermined amount of light impinging on the daylight sensor.
Additionally, the control signal may be generated by a signal sensor which is electrically connected to the power switch. The signal sensor generates the control signal in response to a user command signal. To this end, a hand-held user command
Domel Douglas R.
Walker Winston G.
Harmonic Design Inc.
Masih Karen
Rogitz John L.
LandOfFree
Head rail-mounted actuator for window coverings does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Head rail-mounted actuator for window coverings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Head rail-mounted actuator for window coverings will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2903980