Optics: measuring and testing – By light interference – Having wavefront division
Reexamination Certificate
2007-06-28
2009-10-27
Lyons, Michael A (Department: 2877)
Optics: measuring and testing
By light interference
Having wavefront division
C356S520000
Reexamination Certificate
active
07609392
ABSTRACT:
A method and device realize shallow gratings-based planar beam splitter/combiner. Non-trivial phase shifts between different ports of resulting interferometers are used to acquire full-field phase measurements. The non-trivial phase shifts between different ports of the planar beam splitter/combiner can be adjusted by simply shearing one grating with respect to the second grating. The two shallow diffraction gratings are harmonically-related and can be recorded on a single substrate for compact interferometric based schemes. During the recording process, the two gratings are aligned such that the grating planes and the grating vectors are parallel to that of each other. The relative phase of the recording beams controls the shearing between the recorded harmonically-related shallow phase gratings. The relative shearing of the two gratings defines the non-trivial phase shift between different ports of the compact planar beam splitter/combiner.
REFERENCES:
patent: 3829219 (1974-08-01), Wyant
patent: 4653921 (1987-03-01), Kwon
patent: 6307635 (2001-10-01), Goldberg
patent: 6879427 (2005-04-01), Mendlovic et al.
patent: 2006/0268408 (2006-11-01), Toussaint et al.
J. C. Shaw, “Metrology using differential phase-contrast microscopy,” Microelectron. Eng. 13, 527-530 (1991).
P. J. McMahon, E. D. Barone-Nugent, B. E. Allman, and K. A. Nugent, “Quantitative phase-amplitude microscopy II: differential interference contrast imaging for biological TEM,” J. of Microsc.-Oxford 206, pt. 3, 204-208 (2002).
F. Zernike, “Phase contrast, a new method for the microsopic observation of transparent objects,” Physica 9, No. 7, 686-698 (1942).
F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects Part II,” Physica 9, No. 10, 974-986 (1942).
W. Shimada, T. Sato, and T. Yatagai, “Optical surface microtopography using phase-shifting Nomarski microscope,” Proc. SPIE 1332, 525-529 (1990).
P. Hariharan, and M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Comm. 126, 220-222 (1996).
C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE 2984, 72-81 (1997).
M. R. Arnison, C. J. Cogswell, N. I. Smith, P. W. Fekete, and K. G. Larkin, “Using the Hilbert transform for 3D visualization of differential interference contrast microscope images,” J. of Microsc.-Oxford 199, pt. 1, 79-84 (2000).
M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. of Microsc.-Oxford 214, pt. 1, 7-12 (2004).
H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Comm. 260, 117-126 (2006).
U. Schnars, and W. Juptner, “Direct Recording of Holograms by a Ccd Target and Numerical Reconstruction,” Appl. Opt. vol. 33, No. 2, 179-181 (1994).
E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. vol. 24, No. 5, 291-293 (1999).
G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), (2005), pp. 060503-1-060503-3.
T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30 (10), 1165-1167 (2005).
D. S. Marx, and D. Psaltis, “Polarization quadrature measurement of subwavelength diffracting structures,” Appl. Opt. 36 (25), 6434-6440 (1997).
D. O. Hogenboom, C. A. DiMarzio, T. J. Gaudette, A. J. Devaney, and S. C. Lindberg, “Three-dimensional images generated by quadrature interferometry,” Opt. Lett. 23 (10), 783-785 (1998).
M. A. Choma, “Instantaneous quadrature low-coherence interferometry with 3× 3 fiber-optic couplers,” Opt. Lett. 28 (22), 2162-2164 (2003).
Z. Yaqoob, J. Fingler, X. Heng, and C. H. Yang, “Homodyne en face optical coherence tomography,” Opt. Lett. 31(12), 1815-1817 (2006).
B. L. Danielson, and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30 (21), 2975-2979 (1991).
V. V. Tuchin, “Coherence-domain methods in tissue and cell optics,” Laser Phys. 8 (4), 807-849 (1998).
S. R. Thurber, A. M. Brodsky, and L. W. Burgess, “Characterization of random media by low-coherence interferometry,” Appl. Spectrosc. 54 (10), 1506-1514 (2000).
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
C. M. B. Cordeiro, L. Cescato, A. A. Freschi, and L. F. Li, “Measurement of phase differences between the diffracted orders of deep relief gratings,” Opt. Lett. 28 (9), 683-685 (2003).
P. Marquet, B. Rappaz, P. J. Magistretti et al., “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Optics Letters 30 (5), 468-470 (2005).
T. Ikeda, G. Popescu, R. R. Dasari et al., “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Optics Letters 30 (10), 1165-1167 (2005).
D. O. Hogenboom, C. A. DiMarzio, T. J. Gaudette et al., “Three-dimensional images generated by quadrature interferometry,” Optics Letters 23 (10), 783-785 (1998).
Z. Yaqoob, J. G. Wu, X. Q. Cui et al., “Harmonically-related diffraction gratings-based interferometer for quadrature phase measurements,” Optics Express 14 (18), 8127-8137 (2006).
J. Atencia and D. J. Beebe, “Controlled microfluidic interfaces,” Nature 437, 648-655 (2005).
M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond Transillumination Optical Coherence Tomography,”Optics Letters, vol. 18 (12), pp. 950-952 (1993).
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,”Optics Communications, vol. 117, pp. 43-48 (1995).
G. Hausler and M. W. Lindner, “Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,Journal of Biomedical Optics, vol. 3 (1), pp. 21-31 (1998).
M. Wojtkowski, A. Kowalczyk, P. Targowski, and I. Gorczynska, “Fourier-domain optical coherence tomography: next step in optical imaging,”Optica Applicata, vol. 32 (4), pp. 569-580 (2002).
R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,”Optics Express, vol. 13 (9), pp. 3513-3528 (2005).
M. A. Choma, M. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,”Optics Express, vol. 11(18), pp. 2183-2189 (2003).
R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,”Optics Express, vol. 11(8), pp. 889-894 (2003).
J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,”Optics Letters, vol. 28 (21), pp. 2067-2069 (2003).
S. Yun, G. Tearney, B. Bouma, B. Park, and J. F. de Boer, “High-speed spectral domain optical coherence tomography at 1.3 μm wavelength,”Optics Express, vol. 11(26), pp. 3598-3604 (2003).
N. A. Nassif, B. Cense, T. C. Chen, M. C.
Sarunic Marinko
Wu Jigang
Yang Changhuei
Yaqoob Zahid
California Institute of Technology
Gates & Cooper LLP
Lyons Michael A
LandOfFree
Harmonically matched diffraction grating pair does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Harmonically matched diffraction grating pair, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Harmonically matched diffraction grating pair will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4120802