Hardened porous ammonium nitrate

Explosive and thermic compositions or charges – Containing inorganic nitrogen-oxygen salt – Ammonium nitrate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06398888

ABSTRACT:

BACKGROUND
The present invention is directed to hardening ammonium nitrate prills and granules without affecting other important physical properties.
A problem in the ammonium nitrate art is the competing need for porosity versus the need for hardness. This is especially true for prills or granules that are used for explosive applications. Ammonium nitrate may be used for other applications such as fertilizers, wherein porosity is not an important property, in fact, it is undesirable. Hardness is important for fertilizers since hardness is related to the solubilization rates Therefore, hardness is important for both explosive and fertilizer applications. Those skilled in this art know that, generally, hardening prills for the purposes of storage and/or transportation to their end-use destination has been a problem in this art for sometime.
Hardness for ammonium nitrate prills is generally defined by crushing strength, which is tested by providing a constant load on the prill until the prill is crushed or cracked. The porosity is generally determined in terms of particle density as can be measured by mercury pyknometry.
The present invention advances the ammonium nitrate art with the application of polymers, organic, inorganic and/or combinations thereof to produce a hardened ammonium nitrate unknown to this art. The ammonium nitrate of the present invention may be used for any application where hardness is important. This is especially true for the explosive and the fertilizers arts for use as prills.
SUMMARY OF THE INVENTION
A hardened ammonium nitrate comprised of a combination of a single and/or a plurality of functionally active polymers and ammonium nitrate. The functionally active polymers may be comprised of organic polymers with a range of average molecular weights from about 200 to and through an upper range of 700,000. Preferably, the molecular weight is about 10,000 to and through an upper range of 200,000. Most preferably, the molecular weight is about 60,000 to and through about 150,000. The polymers of this invention may be combined as a homologous series and/or some combination thereof and/or therebetween. Polymers from all organic families are contemplated as useful and operative hereunder. Polymers such as acrylics, vinyl polymers, styrenes, polycarbonates, methacrylates, polypropylene, allyic, copolymers thereof such as maleic anhydride and polystyrene, combinations thereof and/or therebetween. Preferably, acrylics, styrenes, polystyrenes, combinations thereof and/or therebetween. Most preferably, polystyrene. The polymers hereof may be cross-linked, branched, linear, homopolymers, and/or combinations thereof and/or therebetween.
The functional activity provided to the polymer groups may be characterized as associated species. Associated species means any group that is functionally operative within the polymer unit and/or associated thereby which enables film forming with and/or on the ammonium nitrate, ionic association with the ammonium nitrate, sorption on the ammonium nitrate surface, physico-chemical activity with the ammonium nitrate, combinations thereof and/or any chemical or physical force which enables communication between the ammonium nitrate and any of the polymers cited hereinabove.
The functional activity is directed to associate with the ammonium nitrate crystallites. The association relies on the operative mechanisms disclosed hereinabove, and provides the communication between the polymer and the ammonium nitrate. The communication between polymer and ammonium nitrate need not be continuous throughout the polymer/ammonium nitrate interfaces thereby allowing for discontinuity between the two substances. It has been observed that continuous, discontinuous, and combinations thereof and/or therebetween of polymer and ammonium nitrate communications occur in the present invention. Preferably, the communication is a combination of discontinuous and continuous.
The functionally active groups enabling communication are comprised of groups from inorganic species, organic species, and combinations thereof and/or therebetween. The inorganic species may be comprised of combinations of oxygen derived species such as nitrates, sulfates, sulfonates, phosphates, phosphites, phosphonates, and any operable oxyradical and/or oxygen derived species from the first, second, and/or third transition series of the Periodic Chart. Preferably, sulfates, sulfonates, phosphates, and/or phosphonates. Most preferably, sulfonates and/or phosphonates. Organic species may be comprised of carboxylates, amines, hydroxyls, quaternary ammonium species, the di and/or tri combinations thereof, and/or combinations thereof and/or therebetween. Preferably, carboxylates, amines, and/or quaternary ammonium species. Most preferably, amines and/or quaternary amines. Useful combinations of these groups are sulfonates and amines, sulfonates and carboxylates, phosphonates and amines, phosphonates and carboxylates, sulfates and carboxylates, and combinations thereof.
The functionally active group may be introduced into the polymer as radicals or may be formed thereafter, or may be introduced as some ionic species, such as in a moiety, precursors thereof, and/or combinations thereof and/or therebetween. Preferably, the functionally active group is entered into the polymer as a radical. The functionally active group is added from about 0.0001 weight percent to about 10.0 weight percent of the ammonium nitrate, solubilized prior to the beginning of crystallization. Preferably, the functionally active group is added from about 0.0005 to 5.0 weight percent. Most preferably, the functionally active group is added from about 0.01 to about 1.0 weight percent.
Salts of the functionally active groups, such as sulfate and sulfonate salts, may be made as a combination of the polymer and functionally active group. Preferred examples of these salts are the monovalent salts, polystyrene sulfonate, polyvinyl sulfonate, polystyrene sulfonate copolymerized with maleic anhydride.
Optionally, a connecting group may be inserted between the polymer and the functionally active group. The connecting group may be a hydrocarbon of up to 8 carbons. While the present invention contemplates an upper limit of 8 carbons, preferably a linear chain, larger connecting groups may be operable, as well. The connecting group is a means to extend the distance between the polymer and functionally active group. Advantages from that extension may be realized by the addition of other kinds of connecting groups, but functionally the groups provide similar operability.
One of the present inventions more preferable embodiments may be presented by the following formula:
Wherein
Y=connecting group
R=hydrogen or methyl groups
n=0 up to 8
m=integer from 3 to 3000
X=alkali metal, ammonium, hydrogen
An advantage to the present invention is its film forming capability. Ammonium nitrate bodies that have been formed by the prior art, may be filmed with the present invention to form an AN prill core/shell spherical or other shape with enhanced hardness. The core may be comprised principally of AN or some combination of AN and some other common explosive and/or fertilizer known to those skilled in this art. Advantageously, the properties of the shell, which are derived from the polymer, may be varied to produce a shell with flexible density and/or hardness. Flexible density means that a range of different densities, either single and/or a plurality thereof, may be coated over a preexisting or as formed prill. The density of the shell may be made to either match the core density and/or increase or decrease the density of the shell relative to the core. Density of the AN prill is an important property in the ultimate product use as an explosive. Density ranges of the shell may be from about 0.5 to about 1.7. The density of the shell may be additionally varied by multi-filming the AN prill to provide a shell of either several films of the same density or a shell of films with a range of varying density.
Thickness

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hardened porous ammonium nitrate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hardened porous ammonium nitrate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hardened porous ammonium nitrate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2974896

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.