Machine element or mechanism – Control lever and linkage systems – Elements
Reexamination Certificate
1999-05-11
2001-08-21
Bucci, David A. (Department: 3682)
Machine element or mechanism
Control lever and linkage systems
Elements
C074S504000, C074S551800, C180S170000, C180S335000
Reexamination Certificate
active
06276230
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the field of throttle controllers. More specifically, the invention relates to a throttle controller with a rotary position sensor for controlling an engine, motor, or powered vehicle, whether internal combustion (IC), electric, or otherwise.
2. Description of the Related Art
A wide variety of devices and methods exist that are related to position sensors. A few examples of patents related to position sensors are as follows, each of which is herein incorporated by reference for its pertinent and supportive teachings:
U.S. Pat. No. 5,828,290 is a modular position sensor;
U.S. Pat. No. 5,460,035 is a bearing free spring free throttle position sensor;
U.S. Pat. No. 5,416,295 is a combined pedal force switch and position sensor;
U.S. Pat. No. 5,415,144 is a throttle position validation method and apparatus;
U.S. Pat. No. 5,385,068 is an electronic accelerator pedal assembly with pedal force sensor;
U.S. Pat. No. 5,321,980 is an integrated throttle position sensor with independent position validation sensor;
U.S. Pat. No. 5,133,321 is an integrated throttle control and idle validation sensor;
U.S. Pat. No. 5,047,746 is a potentiometer wiper assembly;
U.S. Pat. No. 5,039,975 is a resistor substrate for a variable resistor employed in a throttle sensor;
U.S. Pat. No. 4,703,649 is a throttle valve opening sensor;
U.S. Pat. No. 4,688,420 is a throttle valve position detecting device for a vehicle engine;
U.S. Pat. No. 4,621,250 is a rotary potentiometer, particularly for measuring angular position;
U.S. Pat. No. 4,616,504 is a throttle position sensor with a potentiometer modular that fits into a connector casing;
U.S. Pat. No. 4,435,691 is a dual track resistor element having nonlinear output;
U.S. Pat. No. 4,430,634 is a rotary potentiometer with molded terminal package;
U.S. Pat. No. 4,334,352 is a method of making of a variable resistance control; and
U.S. Pat. No. 3,643,198 is a linear displacement transducer system.
The foregoing patents reflect the state of the art of which the applicant is aware and are tendered with the view toward discharging applicants' acknowledged duty of tender in disclosing information that may be pertinent in the examination of this application. It is respectfully stipulated, however, that none of these patents teach or render obvious, singly or when considered in combination, the applicants' claimed invention.
In the control of motors and machinery there are a number of interfaces that have been proposed through the years. These interfaces have sought to ease an operator's ability to perform the functions required in the operation of the machines with as little extraneous action and hardware as possible. In this way, an operator may perform as many functions as possible with minimal hindrance and with maximum control to maximize safety and efficiency.
One possible way of controlling recreational machines, such as personal water craft, all-terrain vehicles, and motorcycles, uses a twist-grip mechanism as an interface to the engine throttle via a complex set of mechanical linkages and cables. This method of transmitting the driver's input at the handlebar of the vehicle to the throttle plate on the engine carburetor is expensive, is prone to mechanical failure due to physical damage or corrosion, and is not directly compatible with modern electronic fuel injection (EFI) or electronic engine control systems.
There is much effort to improve the efficiency of internal combustion engines and electric motors on such vehicles, and similarly, to reduce the emissions, or pollutants, that are produced directly or indirectly by these engines and motors. A vital part of better efficiency and reduced emissions is the electronic control circuitry used with the engines and motors. The electronic circuitry monitors various parameters and provides feedback or controls to the engine or motor. The feedback may be a signal which in some way improves efficiency or reduces emissions. The signal may, for example, be used to control the amount of fuel injected into the engine or the timing of ignition sparks.
One component of such electronic circuitry often includes a potentiometer used to sense the position of the throttle valve. This potentiometer is in some ways similar to the volume controls used in radio and television receivers. A voltage is applied across the extreme ends of a resistor. An intermediate tap is provided between the two extreme ends of the resistor. The tap is mechanically linked to the device which is to be sensed, such as the throttle valve, and the position of the device is determined by the voltage at the intermediate tap. Thus, a precise position of a throttle valve may be determined by linking it to a potentiometer mounted on the engine. Once the position is known, other adjustments may be made to control the engine at a higher efficiency.
With electronics becoming more prevalent in automatic engine controls, the ability for driver to interface with engine functions directly from electronic controllers is more desirable. As mentioned above, the complex set of mechanical linkages and cables in recreational machines for controlling a throttle plate does not provide such an interface, even though a potentiometer may be provided as a throttle valve position sensor. Therefore, there existed a need to provide a way to overcome the limitations of conventional throttle controllers and offer a throttle control that can interface directly with electronic engine controls. Otherwise, a limitation will always exist to the efficiencies that may be obtained from such machines.
BRIEF SUMMARY OF THE INVENTION
According to the present invention, a throttle controller is provided comprising an electrical position sensor suitable for mounting on a steering mechanism of a powered vehicle, the position sensor having a movable element and a mechanical interface from the position sensor to a throttle handle, wherein movement of the throttle handle actuates the mechanical interface which, in turn, alters the position of the movable element in the position sensor, providing an electrical indication of the position of the throttle handle suitable for controlling the powered vehicle.
By way of example, the position sensor may be a rotary position sensor having a rotor as the movable element, wherein rotating the throttle handle rotates the rotor. The steering mechanism may be a handlebar, such as that found on a personal water craft, all-terrain vehicle, or motorcycle, and the position sensor may be a potentiometer or magnet and Hall effect device. Accordingly, the vehicle may be a personal water craft, all-terrain vehicle, motorcycle, snow blower, and the like. Also for example, the mechanical interface may be a twist-grip mechanism or it may be a link between the throttle handle and a spring-loaded rotor inside the position sensor housing. In particular, the throttle handle may be a cylindrical grip or a thumb lever. Thus, with these structures in mind, the present invention provides a way to eliminate mechanical linkages and cables and offers a throttle control that can interface directly with electronic engine controls.
The foregoing and other features and advantages of the present invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings.
REFERENCES:
patent: 3457537 (1969-07-01), Hines
patent: 3643198 (1972-02-01), Economu
patent: 4334352 (1982-06-01), VanBenthuysen
patent: 4430634 (1984-02-01), Hufford et al.
patent: 4435691 (1984-03-01), Ginn
patent: 4616504 (1986-10-01), Overcash et al.
patent: 4621250 (1986-11-01), Echasseriau et al.
patent: 4643497 (1987-02-01), Oelsch
patent: 4688420 (1987-08-01), Minagawa
patent: 4703649 (1987-11-01), Eitoku et al.
patent: 4841626 (1989-06-01), Griebel
patent: 4864273 (1989-09-01), Tsuzuki et al.
patent: 5039975 (1991-08-01), Ishihara
patent: 5043695 (1991-08-01), Simon et al.
patent: 5047746 (1991-09-01), Stilwell et al.
patent:
Crum R. Clayton
Kurtz Kevin D.
Zdanys, Jr. John
Borgman Mark W.
Bourgeois Mark P.
Bucci David A.
CTS Corporation
Joyce William C
LandOfFree
Handle bar throttle controller does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Handle bar throttle controller, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Handle bar throttle controller will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2540164