Communications: electrical – Condition responsive indicating system – Specific condition
Reexamination Certificate
2000-09-07
2002-05-21
Tweel, John A. (Department: 2632)
Communications: electrical
Condition responsive indicating system
Specific condition
C340S691100, C222S052000, C222S105000, C222S185100, C222S189090
Reexamination Certificate
active
06392546
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to the field of healthcare, and more particularly to a method and combination for encouraging hand washing and for determining compliance with hand washing requirements in healthcare settings.
Tens of thousands of people die each year from infections they acquire while they were a patient in a hospital. These infections were unrelated to their initial hospital admission. A hospital acquired infection is called a “nosocomial infection.”
The CDC (Center for Disease Control & Prevention) in the United States, has reported data that shows that more than 50% of all nosocomial infections can be directly related to the transmission of harmful bacteria by healthcare workers who have not properly washed their hands before and after each patient contact.
The number one reason given for healthcare workers not following proper hand washing guidelines is “not enough time and not enough conveniently located hand washing stations to wash hands as often as required.”
The problem of insufficient hand washing is becoming worse. Hospitals through staff reductions are requiring healthcare workers to attend to more patients during the healthcare worker's work shift. Additionally, high transmission rates of antibiotic resistant bacteria and viruses require more adherence to the CDC hand washing guidelines. Hospital administrations are searching for products and services that encourage hand washing, and a means to ensure and measure compliance.
The problem of hand washing has been recognized for many years, and various efforts have been made to address it. Obviously, many types of devices and agents have been developed for assisting in the hand washing function. Another aspect of the matter is determining whether or not there has been compliance with hand washing directives. A recent U.S. Pat. No. 6,038,331, issued Mar. 14, 2000, discloses combination and a method for monitoring hand washing. Another is U.S. Pat. No. 5,945,910, issued Aug. 31, 1999 for a method and combination for monitoring and reporting hand washing. Another approach, although not measuring or checking for compliance, is directed to alerting someone of the need to wash their hands. This is addressed in U.S. Pat. No. 4,896,144, issued Jan. 23, 1990 for a hand washing alert. Another patent directed to a method and system for improving hand cleanliness, primarily in a food service environment, is U.S. Pat. No. 5,812,059, issued Sep. 22, 1998. It discloses a method and system for improving hand cleanliness. In this one, an indicator worn by a worker, is activated when the worker leaves a food handling area. The indicator, worn by the worker, is deactivated by a deactivating device associated with a hand cleaning station, and only when it is determined that the worker has used the hand cleaning station before re-entry to the food handling area. The above-mentioned patents are the closest of which I am aware dealing with the matter of monitoring hand washing.
There are some products which have been advertised in connection with monitoring hand washing. A so-called “HACCP” Hand Wash Supervisor, marketed by CFEI at Plas de la Halle, 8910 La Ferte Loupiere, France. Another organization marketing with the brand “HyGenius” advertises “Over 10,000,000 perfect hand washes.” Another monitoring combination is offered by The Clean Hands Company of 10830 Galt Industrial Drive, St. Louis, Mo. 63132. In this system, according to the marketing information, each employee wears an ID badge. A detector at each entrance of a restroom will notify a central computer system when an employee enters, and will wait for the employee to wash their hands before leaving. The employee applies the proper amount of soap, rubs hands together to generate the appropriate lather, and places hands under the camera eye of the instrument in the restroom which, in 5 seconds, will analyze and reveal a “pass” or “fail” reading. An employee can add soap if needed and retest as many times as necessary to pass. Once a “pass” has been achieved, the soap can be rinsed. The “pass/fail” information is fed to a central computer, whereby the employer can determine whether or not an employee is cooperating. Their “web” address is http:H/www.cleanhandsco.com.
The foregoing prior art systems appear to focus on the use of soap, water and sink basins for hand washing. While that is the conventional approach to hand washing, it has been found that, in many circumstances, there is no visually observable evidence of soil on the hands, so they appear clean and not in need of hand washing. In such cases, it may appear that there is no need for hand washing when, in fact, the hands may be seriously contaminated with transient bacteria and/or viruses. Besides, soap and water and a sink are not always conveniently located relative to the treatment site for a patient. In an effort to address this problem, antimicrobial products have been developed and marketed in containers or packages that can be carried by the healthcare worker. These contain an alcohol-based waterless and fast drying gel which can be dispensed on the hands before and after each patient contact, at the patient contact location. But, to my knowledge, there has not been a way to reliably monitor usage of such dispensing containers or packages.
While the foregoing comments have been directed to the hospital environment, it can be understood easily that they apply also to other healthcare institutions of various sizes from clinics, down to doctor's offices, down to kiosks, or temporary set-ups in shopping malls for tasks as simple as shots for influenza or cholesterol screenings. While these latter situations might not currently fall under any regulatory organizations' hand washing protocols or compliance requirements, a much larger area is also envisioned. An example is in the case of dealing with disasters, epidemics or other circumstances in which large outdoor areas are dedicated, at least on a temporary basis, to treatment of patients. For certain types of treatment, it may be just as important that hand washing be done as it is in a hospital setting. Moreover, it may be important to monitor compliance on a real-time basis.
The present invention is directed to addressing the problems heretofore involved in connection with encouragement of hand washing, and monitoring compliance with hand washing directives.
SUMMARY OF THE INVENTION
Described briefly, according to one embodiment of the present invention, portable, individualized, filled hand washing agents dispensers are provided from a control station to healthcare workers. Unique worker identification “tag” (ID#), and unique dispenser identification “tag” (ID#) are stored in computer memory. At patient treatment sites of a healthcare facility, wireless signal transmitters are employed, constantly producing a wireless signal. Each dispenser includes a wireless signal receiver, an agents dispensing actuator and information storage device. The receiver is responsive to reception of wireless signals to insert into the storage device, an event signal. When the worker dispenses the hand wash agents, it is recorded in the storage device to represent a hand washing event. The dispenser is worn externally on the health care worker during the entire work shift. At the end of the shift, the dispenser is returned to the control station which has means to identify the dispenser and determine the amount and type of agents dispensed during the work shift, and store that information for subsequent tabulation and reporting. The control station also relates the unique identification signature tag of the dispenser to the unique identification tag of the worker and the amount and type of agents used and stores that information, as well as the unique transmitter site, date and time information from the event record in the dispenser storage, thus tracking the time, date and location, of each occasion specified for use of the dispenser and whether or not the worker dispensed agents from the worker's assigned disp
Tweel John A.
Woodard Emhardt Naughton Moriarty & McNett
LandOfFree
Hand washing compliance measurement and recording system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hand washing compliance measurement and recording system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hand washing compliance measurement and recording system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2865554