Hand held sample tube manipulator, system and method

Measuring and testing – Sampler – sample handling – etc. – With heating or cooling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06186012

ABSTRACT:

FIELD OF THE INVENTION
The invention discloses a hand held device used to manipulate thermal desorption type sample tubes containing analytes. For example, air/gas samples are collected in the sample tubes. Sample tubes are manipulated with the inventive apparatus, moved from sample trays or stations into a heating area where analytes are desorbed from the sample tube and introduced into a measuring device. In another embodiment the invention encompasses the hand held sample tube manipulator as part of a system for introducing analytes from sample tubes into a measuring device.
BACKGROUND OF THE INVENTION
The sample desorption process where analytes are desorbed from sample tubes and moved into a measuring apparatus involves time consuming steps. The invention reduces the time and manipulative steps necessary for putting samples into measuring apparatus. In gathering samples such as for example environmental monitoring, it is not unusual to have several hundred sample tubes collected from one or more monitoring sites. The manipulation of these sample tubes typically involves removal from a sample tray, insertion into a measuring apparatus, measurement, removal and storage or disposal.
As can easily be seen these steps are time consuming particularly when the number of sample tubes is very large. Thus if two hundred tubes are to be measured, a time savings of only 1 minute per tube can result in time savings of 200 minutes or 3⅓ hours. In a typical days work it would not be unusual to measure even more tubes than the aforementioned 200. The present invention fulfills the need for reducing the time need for sample measurement.
BRIEF DESCRIPTION OF THE INVENTION
Broadly, the invention discloses apparatus, systems, methods and uses for the efficient manipulation of sample tubes. The invention reduces the time required for manipulation of sample tubes by apparatus that allows the combination of sample tube manipulation steps that heretofore were performed separately. One aspect the invention typically includes apparatus such as a hand held sample tube desorber and ejector. In another aspect the invention typically includes a system for manipulating and desorbing sample tubes. In yet another aspect the invention typically includes a method for the manipulation of hand held sample desorption tubes. In another aspect of the invention, the invention typically includes a method for operating a system for manipulating and analyzing sample tubes with apparatus such as a gas chromatograph or mass spectrometer. In another aspect of the invention, the invention encompasses a system for sample collection and introduction into a measuring device.
Typically one aspect of the invention includes a sample tube manipulator including: a housing having a central bore with an inlet end and outlet end; a plunger mechanism at least a portion of which is tubular and is slideably disposed within the central bore for reciprocal movement therein. The tubular portion typically is used to expel a sample tube inserted in the central bore at its outlet end, the tubular portion also serving as a gas channel with an inlet end and an outlet end disposed in the same direction as the inlet and outlet end of the central bore. The inlet end of the movable plunger mechanism is typically provided for connection to a gas supply and/or a vacuum pump. Also included is a first seal disposed in the housing for sealing between the central bore and the moveable plunger mechanism; a second seal disposed at the outlet of the housing adapted for sealing between the central bore and an inserted sample tube. Includes also is a holder mounted on the housing adapted to hold the sample tube while allowing ejection of the sample tubes when the plunger mechanism moves reciprocally. A biasing mechanism is used for returning the plunger mechanism to a starting position after movement of the plunger. Typically the plunger mechanism includes a plunger head adapted for movement by manual depression, or a solenoid or pneumatic mechanism that provides movement. Typically the plunger mechanism comprises the reciprocally moveable portion and a stationary portion disposed on the housing for powering the reciprocally moveable portion. The stationary portion typically comprises a stationary portion of a solenoid, pneumatic mechanism, motor, lever, or may comprise a portion of a hand or glove.
Another aspect of the invention provides for a sample tube manipulator including: a housing having a central bore having an upper and a lower end; a plunger mechanism having a tubular portion slideably disposed in the upper end of the bore for reciprocal movement in the bore, the plunger mechanism having a gas channel between upper and lower ends, the upper end of the plunger mechanism adapted to power the plunger mechanism, the lower end of the tubular portion of the plunger mechanism adapted to mate with a sample tube inserted in the lower central bore end for providing gas flow from the gas channel to the sample tube, the plunger mechanism adapted to expel a sample tube inserted in the lower end of the central bore when the plunger mechanism moves; a first gas seal disposed in the central bore, between the bore and the tubular portion of the plunger, that provides gas sealing in the space between the tubular portion of the plunger mechanism and the central bore; a second gas seal disposed at the lower portion of the housing, that provides gas sealing around the outer circumference of an inserted sample tube; a tube holder disposed at the lower portion of the housing, adapted to hold a sample tube inserted in the lower portion of the housing; a biasing mechanism disposed at the upper end of the housing adapted to return the plunger mechanism to a starting position after movement of the plunger mechanism. Typically the plunger mechanism includes a plunger head adapted for movement by manual depression, or a solenoid or pneumatic mechanism that provides movement. Typically the plunger mechanism comprises a reciprocally moveable portion and a stationary portion disposed on the housing for powering the reciprocally moveable portion. The stationary portion typically comprises a stationary portion of a solenoid, pneumatic mechanism, motor, lever, or may comprise a portion of a hand or glove.
A further embodiment of the invention includes: a sample tube manipulator with a housing having a central bore with an upper and a lower end; a plunger mechanism having a tubular portion disposed in the upper end of the bore for reciprocal movement in the bore, the plunger mechanism having a gas channel between and upper and lower ends, the upper end of the plunger mechanism enlarged to a plunger head, the lower end of the tubular portion of the plunger mechanism is adapted to mate with a sample tube inserted in the lower central bore end for providing gas flow from the gas channel to the sample tube, the plunger mechanism is adapted to expel a sample tube inserted in the lower end of the central bore when the plunger head is depressed; a first sealing mechanism disposed in the central bore, between the bore and the tubular portion of the plunger, that provides gas sealing in the space between the tubular portion of the plunger mechanism and the central bore; a second sealing mechanism disposed at the lower portion of the housing, that provides gas sealing around the outer circumference of an inserted sample tube; a holding mechanism disposed at the lower portion of the housing that is adapted to hold a sample tube inserted in the lower portion of the housing; and a biasing mechanism disposed at the upper end of the housing that returns the plunger mechanism to a starting position after depression of the plunger.
A still further embodiment of the invention includes a system for measuring analytes present in a sample tube that includes: a source of gas; first gas control connected to the gas source, that is adapted to receive and regulate gas from the gas source; sample tube manipulator for moving and handling a sample tube, that is operationally connected to the first

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hand held sample tube manipulator, system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hand held sample tube manipulator, system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hand held sample tube manipulator, system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2567193

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.