Hand held computer with see-through display

Computer graphics processing and selective visual display system – Display peripheral interface input device – Including keyboard

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S008000, C345S009000, C348S060000, C348S062000, C348S333080, C348S333060, C348S751000, C348S211130, C348S333020, C348S376000, C396S374000

Reexamination Certificate

active

06597346

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to hand held computers and more specifically to hand held computers having a see-through display.
DESCRIPTION OF THE RELATED ART
One of the primary goals of modern electronics has been to reduce the size of preexisting components. Computer design is a classic example of this trend. Computers have evolved from the room size behemoths of the past to the widely recognized desk-top models of today. The current trend is to take such personal computers one step further by making them easier to transport and work with. Laptop computers have been around for some time and are quite well-known. Laptops generally have the same processing capabilities as desk-top versions and are also capable of providing similarly high resolution displays. Another example in this evolution has been the advent of the personal digital assistant (PDA). These devices comprise hand held terminals and some sort of graphical interface/display. To date, these devices are substantially less powerful than their desktop and laptop counterparts, but are none the less useful tools for many applications.
While these various devices have proven to be extremely popular and very useful, they do have their limitations. One of the primary drawbacks is the size of the display. In the case of laptop computers the display represents approximately half of the entire shell of the computer. In the case of the PDA, the display is also rather large, comparatively. The PDA devices can be obtained in a variety of keypad/display configurations; however, the displays will always be larger than a de facto industry standard so that the operator can view and perceive a practical amount of information per screen. Finally, while the display in the PDA is usually smaller than the laptop display, it also has a significantly lower resolution making it impractical for many personal computing functions.
To some extent these smaller scale, portable displays represent the current practical limits of display technology. It is possible to produce very small high resolution displays; however, these devices are generally wasted because the human eye cannot comprehend detail on such a small scale. As an example, there are commercially available displays that are approximately 0.6″ by 0.5″, or roughly the size of a dime, and display 1000 lines per inch. Such a display is capable of resolutions comparable to desktop monitors (640×480, or greater). Yet, when viewed by itself with the naked eye, all that is perceived is a veritable blur. What this means to the computer industry is that while displays can certainly be improved in quality, they really cannot be marketed as significantly smaller stand alone direct view displays.
It would be desirable to have a stand alone, high resolution display on the order of the size of a watch face, as there are many applications where this would be extremely beneficial. For instance, in today's military, an individual soldier can gain great benefit and realize increased performance by carrying with him a personal computer. However, it simply would not be feasible to expect or require a soldier to carry a bulky laptop in field conditions. The laptop would be cumbersome and would prevent the soldier from simultaneously carrying out other duties as well as hindering his personal ease of movement. A personal computer in the form of a PDA would be more practical than a laptop style computer, however, the PDA would still distract the soldier by taking his concentration away from other critical duties to focus on the personal digital assistant. Furthermore, the display generates a fair amount of light which would often prevent soldiers in the field from being able to use the device without running the risk of being detected. Finally, these displays usually become very difficult to view in outdoor lighting conditions. Therefore, it is clear that current displays are impractical to use in many field conditions and that even though it would be desirable and technologically possible, miniature displays do not solve this problem because of the perceptual limits of human vision.
There are also many other applications where it would be beneficial to simultaneously view a display and certain background information. In general, it is often helpful to have various types of data superimposed onto a real world view. The simplest form of this, conceptually, would be the combination of two separate video images. While creating special effects for a motion picture, actors often perform in front of a blue (or green) screen. Subsequently, the actors performance is combined with a specially created matte, which contains background imagery, to produce a complete composite image. It is often difficult for the actor(s) to perform with no other visual reference and equally challenging for the director to control the scene. Therefore, the intended background is shown on a monitor and a video output from a video camera (which records the same view as the film camera) is displayed on the same monitor. The resultant layered image, though crude, provides the participants with a preview of the final result.
A similar application is the direct combination of electronic data with an operator's view of his current surroundings. Ideally, the operator would have a variety of data options to chose from and would also have the ability to input data back into the system.
Currently, the only commercially practical system available to accomplish such simultaneous viewing would be the connection of a digital camera to a computer system. The digitized image(s) can then be viewed or manipulated with the computer, alone or in combination with other graphical information being displayed. However, the problem still remains of reducing the overall size of the entire system to make it practical for personal/field use. Further, the image must be viewed on the computer screen as opposed to real time viewing of the actual object. It may be more beneficial for the operator to view the real world and have an image superimposed on that view, as opposed to collecting the images and reproducing them on a computer monitor. That way, the operator can have far better control over their field of view (i.e., they can easily select the images they wish to combine).
There are a limited number of applications where data is superimposed directly into an operator's field of view. For instance, certain automobile manufacturers project dashboard information onto the windshield so that a driver can view this information without taking his eyes off the road. Of course, this only provides for viewing the data and not working with it. The ability to manipulate the data requires a more sophisticated link between the real world display and the electronic data display.
One similar technology, which can allow for some control of the electronic data is the helmet mounted or head mounted display. Such devices provide a video display in an eye piece mounted to a helmet which is connected to an external computer/video device. The operator's other eye is left open to view the surroundings. Such a device suffers two major drawbacks. First, the entire system cannot be mounted to the helmet due to the desire to limit the weight placed on the operator's head. Thus, the helmet must be tethered to additional systems. Second, the operator is subjected to viewing a different image with each eye. This could result in a loss of depth perception and also prevents the operator from selectively focusing on either image.
Other helmet mounted displays solve some of these problems by allowing the operator to still use both eyes to view his surroundings. Optical information from a computer/video source is projected onto a partially reflective surface which is positioned in the operator's field of view. The optical data is then reflected directly into the operator's eye. The operator can shift his focus to either detect the data or to focus on his surroundings. Furthermore, since the reflecting surface is on

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hand held computer with see-through display does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hand held computer with see-through display, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hand held computer with see-through display will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3030886

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.