Hand-held apparatus for installing flashover protection...

Metal working – Method of mechanical manufacture – Electrical device making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S235000, C029S745000, C029S03300H, C254S13430R, C174S0050SG

Reexamination Certificate

active

06219907

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to insulating covers and, more particularly, to devices for installing insulating covers.
BACKGROUND OF THE INVENTION
Electrical power may be transmitted from a generation source to consumers via overhead conductors strung between towers or poles. Electrical power is conventionally transmitted in phases wherein multiple conductors are utilized. One or more of these conductors may be a “hot” conductor that carries a specified amount of alternating current electric power. Flashover may result if contact is made between two hot conductors or between a hot conductor and ground. Non-grounded contact with a hot conductor, such as when a bird sits upon a hot conductor, typically does not result in flashover.
The transmission of electrical power from a generation source to residential areas typically involves a combination of transmission devices which make up a transmission system. In a typical transmission system, power is generated by a power plant such as a hydroelectric installation, a steam installation or a nuclear plant. The output from a power plant generator is normally about 25 kilovolts (kv). The output from a power plant generator is typically transmitted to a step-up substation where the voltage is increased to a transmission line voltage of 230 kv or higher. The next substation encountered is typically a transmission substation where the transmission voltage is decreased from the transmission line voltage to a sub-transmission voltage of approximately 69 kv. A distribution substation is then typically used to step the voltage down from the transmission voltage to a distribution voltage of about 5 to 35 kv. The distribution voltage is the voltage that is transmitted to a residential area, either through overhead or underground distribution systems. Single phase transformers are typically provided at the residential level to reduce voltage to a 240-120 volt, single phase, three wire residential power entrance.
Because uninsulated conductors are typically less expensive than insulated conductors, many electric power suppliers utilize uninsulated conductors for the transmission and distribution of electric power. Although uninsulated conductors may be less expensive to install than insulated conductors, potentially costly problems may arise from the use of uninsulated conductors. Adequate clearances between conductors and/or other grounded objects may not be sustainable during adverse weather conditions (i.e., storms and high winds). As a result, the potential for flashover caused by uninsulated conductors contacting each other or other objects may be increased. Another source of flashover may be caused by large birds and animals which have sufficient size to make contact with a hot conductor and a grounded object or another conductor. In addition, falling trees and tree branches may cause contact between hot conductors and ground which may result in flashover.
Substations typically include various steel structures for supporting power transmission and distribution equipment, such as circuit breakers, transformers, capacitors, regulators, hook switches and the like. Uninsulated conductors typically extend between the equipment in a substation in various directions and configurations. Because workers often work in close proximity to the equipment in a substation, it is typically desirable to cover at least some portions of the uninsulated conductors as well as grounded structures in the vicinity of uninsulated conductors.
Flashover may result in power outages which are undesirable to electric power suppliers and to consumers. For existing power transmission and distribution systems, electric power suppliers may find it desirable to replace uninsulated conductors with insulated ones in order to reduce the likelihood of flashover. Unfortunately, the cost of replacing uninsulated conductors with insulated conductors may be expensive. Furthermore, an interruption in the delivery of power may be required to replace uninsulated conductors. This may be economically disadvantageous to an electric power supplier as well as being undesirable to electric power consumers.
Insulating covers for protecting workers from hot, uninsulated conductors, as well as for protecting against flashover, are available. These covers conventionally include thick rubber tubing, heat-shrinkable tape, and wrap-around covers. Unfortunately, there are drawbacks associated with installation methods for each of these types of covers. Thick rubber tubing can be somewhat bulky and difficult to install. Furthermore, tubing covers may require that a conductor be disconnected from service so that the conductor can be inserted through the tubing. Such electrical power service interruptions may be economically disadvantageous to an electric power supplier as well as being undesirable to electric power consumers.
The use of heat-shrinkable tape typically requires the use of a torch or other heat source for shrinking the tape to a conductor. The use of a torch or other heat source, particularly around substation equipment, is generally undesirable and can be labor intensive. Wrap-around covers typically do not snap together and typically are secured to a conductor or other structure using ties. Unfortunately, this method can be a somewhat labor intensive process as well.
Insulating covers are available that do not require that a conductor be removed from service. These covers are typically flexible panels having elongated opposite edge portions that are configured to be joined together to enclose a conductor or other elongated structure. Unfortunately, operations for joining the edges together on these types of covers can be labor intensive.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide hand-held devices that allow a user to quickly join the edges of flashover protection covers together.
It is another object of the present invention to provide hand-held devices that allow a user to quickly install flashover protection covers on energized conductors without requiring that the conductors be removed from service during installation.
These and other objects of the present invention are provided by hand-held devices that can be used to quickly install flashover protection covers around energized electrical conductors and other equipment. A hand-held cover installation device according to the present invention includes a rigid frame having opposite sides. A guide assembly is secured to one side and a handle is secured to the other side of the rigid frame. The guide assembly includes an elongated bottom wall having opposite first and second ends. A pair of spaced-apart, elongated side walls extend upwardly from the bottom wall. The side walls converge towards the bottom wall first end to define a guide assembly outlet and diverge towards the bottom wall second end to define a guide assembly inlet.
The guide assembly includes a partition that aligns the various portions of a flexible panel passing through the guide assembly during installation of a cover. According to one embodiment of the present invention, the partition includes a base member that extends upwardly from the bottom wall between the elongated side walls. An elongated top wall is transversely connected to the base member so as to be maintained in spaced-apart relationship with the bottom wall. The guide assembly defines a pair of spaced-apart, converging passageways that are configured to slidably receive the elongated edge portions of a flexible panel therethrough. The converging passageways force together the opposite edge portions of a flexible panel being advanced through the guide assembly.
Hand-held devices according to the present invention are particularly advantageous because they are lightweight and easy to use. With a single arm motion, the edge portions of a cover surrounding an energized conductor or other structure can be joined together. As such, flashover protection covers can be installed on energized conductors and equipment safely and qui

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hand-held apparatus for installing flashover protection... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hand-held apparatus for installing flashover protection..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hand-held apparatus for installing flashover protection... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2514785

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.