Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device
Reexamination Certificate
1999-06-11
2004-08-24
Hjerpe, Richard (Department: 2778)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Cursor mark position control device
C345S158000, C345S161000, C345S156000, C345S184000
Reexamination Certificate
active
06781569
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the field of mechanical hand controllers. More particularly, in preferred embodiments the invention relates to a haptic device that provides sensory feed-back to a user, to a preferred form of rotary electrical actuation or “torquer” for activating the controller, and to a user input system suited to haptic controllers.
BACKGROUND TO THE INVENTION
Hand controllers are known wherein a handle is carried at the outer end of an arm extending from a five-bar linkage. In known arrangements, two of the rotary joints of the five-bar linkage are both equipped with rotary sensors and rotary actuators. A control processor receives signals from the sensors that correspond to the position of a cursor point located at the distal end of the arm in the X-Y plane. The handle, which may be of pen-like form, is used to move the distal end of the arm with its cursor point. Signals from the sensors are processed to move a video cursor on the screen of a video terminal in correspondence with the X-Y location of the cursor point within the working space of the controller.
With actuators present, the control processor is able to apply forces to the handle in correspondence with the movement of the cursor point and/or in relation with images present on the video terminal screen, providing haptic feed-back to a user. For example, in computer-aided drafting, a “CAD” system, the presence of a line on the screen can be haptically signalled to a user by a resistance to movement of the cursor point that would cause the video cursor to otherwise move across a line present on the video screen.
In the prior art system disclosed above, no provision is made for input to be provided in response to movement of the handle in the Z direction. No provision is made for the arm to be actuated in the Z direction or otherwise function in response to motion in the Z direction. One object of the present invention is, therefore, to provide an arrangement whereby movement of the cursor point in the Z direction may be exploited to provide additional functionalities, signal input to the control processor and, optionally, haptic feed-back.
In the prior art system referenced, a pressure sensitive tip on a stylus-format handle carried at the end of the arm supported by the planar five-bar link was able to provide signals to the control processor when pressed on to a tablet. These pressure responsive signals were used to mostly replace the function of a button. No provision was made, however to use such signals to control the character of the haptic stimulus generated by the hand controller. Further, no information as to the position of the stylus in the Z direction (other than contact of the tip with a tablet) was combined with the output from the pressure sensitive tip to affect the operation of the hand controller. The present invention addresses these omissions to provide improved functionality in a hand controller.
In actuating a haptic controller based on rotary devices that control rotary joints in a five-bar linkage, it has been felt necessary in the past to use discrete electromagnetic torquing devices. These devices, called -“torquers”-, have operated on the basis of the Lorentz effect wherein a moving coil positioned within a magnetic field tends to or exert a torque or a force, that depends on the current passing through the coil. When multiple, discrete torquers are employed, the parts of the respective torquers are duplicated in each other. An object of this invention is to provide a torquing device wherein two or more torquing arms share commons structural aspects, thus reducing the total parts needed in providing two rotary actuators.
The invention in its general form will first be described, and then its implementation in terms of specific embodiments will be detailed with reference to the drawings following hereafter. These embodiments are intended to demonstrate the principle of the invention, and the manner of its implementation. The invention in its broadest and more specific forms will then be further described, and defined, in each of the individual claims which conclude this Specification.
SUMMARY OF THE INVENTION
According to one aspect of the invention, a hand controller incorporates a sensing arm assembly for a position sensing mechanism comprising:
(a) an arm having a moveable operative end and a mounted end carried by a fixed base;
(b) support means coupled between the mounted end of the arm and the base, said support means providing the arm with two degrees of freedom in horizontal directions about the base and one rotational degree of freedom about an arm rotational axis located at the mounted end of the arm, said arm rotational axis permitting the operational end of the arm to be displaced vertically with respect to the horizontal plane;
(c) horizontal position sensing means carried by the base to sense the location of the operative end of the arm in horizontal directions;
(d) vertical displacement sensing means carried by the base, and preferably positioned at the mounted end of the arm, to sense the vertical displacement of the operative end of the arm with respect to the mounted end;
(e) output means coupled to the horizontal position sensing means and to the vertical displacement sensing means to provide output signals from such sensing means
whereby the output signals correspond to the location of the operative end of the arm in three dimensional space.
Such a sensing arm assembly is suited for use in an hand controller having a handle mounted at the operative end of the arm for movement of such end, and a cursor point located therein, through space.
The invention in an alternate description is directed to a hand controller comprising:
(a) a base;
(b) a grasping handle free for movement about a horizontal plane;
(c) a linkage positioned between the base and the handle having base and distal ends;
(d) horizontal position sensors carried by the base to provide signals corresponding with the position of the grasping handle with respect to the horizontal plane; and
(e) an arm extending between the handle and the distal end of the linkage, characterized by:
(i) hinge means carried by the linkage permitting the arm to be displaced upwardly and downwardly with respect to the horizontal plane; and
(ii) vertical displacement sensing means carried by the linkage for sensing the vertical displacement of the grasping handle.
Again this hand controller may include biasing means connected between the linkage and the arm for returning the grasping handle to a zero position in respect of vertical displacements in at least one vertical direction. This biasing means may provide a restoring force directing the handle towards the zero position wherein the restoring force varies linearly or functionally the displacement of the handle end from the zero position.
The zero position for the cursor point may be located in a plane that is elevated above the surface over which the cursor point may move, thereby providing a “virtual tablet” surface; or it may cause the operative end of the arm to become automatically parked against an actual tablet surface.
In effect the arm of the invention has one rotational degree of freedom about an arm rotational axis located at the base end of the arm, this arm rotational axis preferably lying substantially in the horizontal plane. This axis permits the operational end of the arm to be displaced vertically with respect to the mounted end. To this combination may be added vertical displacement sensing means positioned at the mounted end of the arm to sense the vertical displacement of the operative end of the arm whereby a signal corresponding to the location of the operative end of the arm in the vertical direction is provided.
As a convenient means of providing the restoring force, the sensing arm may be equipped at its mounted end with an elastically bendable protrusion coupled at its root end to the arm, functioning as an elastic hinge. This protrusion has a protruding, free end that is constrained against vertical displacement in
Gregorio Pedro
Hayward Vincent
Ramstein Christophe
Hjerpe Richard
Immersion Corporation
Kilpatrick & Stockton LLP
Zamani Ali
LandOfFree
Hand controller does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hand controller, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hand controller will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3356371