Aeronautics and astronautics – Spacecraft – With fuel system details
Reexamination Certificate
1999-05-11
2002-12-10
Jordan, Charles T. (Department: 3644)
Aeronautics and astronautics
Spacecraft
With fuel system details
C244S158700, C062S045100, C220S560070
Reexamination Certificate
active
06491259
ABSTRACT:
REFERENCE TO A “MICROFICHE APPENDIX”
Not applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates in general to liquid oxygen tanks and feedline system of a composite material construction and more specifically to resins containing halogen elements or laminates subjected to halogenated treatments, either of which may be suitable for use as an oxygen tank or feedline system.
2. General Background
The development of polymer composite liquid oxygen tanks is a critical step in creating the next generation of launch vehicles. Future reusable launch vehicles need to minimize the gross liftoff weight (GLOW) by reducing the dry mass fraction. The (dry) mass fraction is the weight of the launch vehicle without fuel divided by the weight of the vehicle with fuel.
FIG. 1
is graph showing the effect of mass fraction on GLOW. Indicated on the graph are the RLV mass fraction target region as well as the mass fraction of the RLV without the weight reduction that composites could provide. It is clear that the benefit of composites tanks are critical to enable future launch vehicles to meet required mass fractions.
The required mass fraction is possible due to the reduction of weight that composite materials can provide. Traditional oxygen tanks are usually made from metals. The space shuttle external tank (ET) has historically been made from 2219 aluminum and more recently 2195 aluminum/lithium alloy.
FIG. 2
shows a comparison between these two aluminum alloys and a typical composite material for a liquid oxygen tank for a launch vehicle. The chart shows that a composite tank provides up to 41% and 28% weight savings when compared to 2219 and 2195 aluminum tanks, respectively.
In addition to meeting the required mass fraction, a liquid oxygen tank must be compatible with oxygen. The ASTM definition for oxygen compatibility is the “ability of a substance to coexist with both oxygen and a potential source(s) of ignition within the acceptable risk parameter of the user.” It is imperative that materials are selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. Typically, non-metallic materials are not used in these applications because most are easily ignited in the presence of oxygen. However, there are some polymeric materials with inert chemistries that may be used for this application and resist ignition. These chemistries were evaluated by fabricating coupons and testing them with various ignition mechanisms in the presence of liquid and gaseous oxygen. The testing performed reflected situations in launch vehicles that could be potential sources of ignition in composite. These tests included pressurized mechanical impact, particle impact, puncture, puncture of damaged, oxygen-soaked samples, electrostatic discharge, friction, and pyrotechnic shock. An example of a polymeric material system that resisted reaction to these mechanisms were halogenated composites.
Applications include liquid oxygen for future launch vehicles, such as the Lockheed Martin Reusable Launch Vehicle (RLV). They could also potentially be used in other aerospace applications, including but not limited to, RFP (rocket fuel propellant) tanks and crew vehicle cabins. Other industries that may be interested in composite oxygen tanks include the air handling and medical industries. The ability to resist ignition may also be useful in chemical storage tanks and NGV (natural gas vehicle) tanks.
The following U.S. Patents are incorporated herein by reference: U.S. Pat. Nos. 5,056,367; 5,251,487; 5,380,768; 5,403,537; 5,419,139; and all references cited in those patents.
The following international applications published under the PCT are incorporated herein by reference: International Publication Nos. WO 97/18081 and WO 97/28401 and all references cited in those publications.
SUMMARY OF INVENTION
A fiber-reinforced composite is defined as a material consisting of fibers of high strength and modulus embedded in or bonded to a matrix with distinct interfaces or boundaries between them. In this form, both fibers and matrix retain their physical and chemical identities, yet they produce a combination of properties that cannot be produced by either constituent alone. In general, fibers are the principal load carrying members, while the surrounding matrix keeps them in desired location and orientation, transfers loads between fibers, and protects the fibers. The matrix material may be a polymer, a metal, or a ceramic. This patent focuses on polymer matrix composites.
The fibers can be made from a variety of materials. These materials include glass, graphite or carbon, polymers, boron, ceramics, or metals. Glass fibers include E-glass (electrical) and S-glass (structural) types. Carbon fibers include those made from different precursors,. such as polyacrylonitrile (PAN) or pitch. Polymer fibers include, but are not limited to, aramid (Kevlar(®), polyethylene (Spectra®, or PBO (Zylon(®). Ceramic fibers may include silicon carbide (SiC) or aluminum oxide (Al203).
For cryogenic tanks, the preferred matrix material is a polymer. The preferred fiber is carbon fiber, more preferably PAN-based fibers, more preferably high strength (over 500 ksi) and high modulus (over 30 Msi) fibers. The most preferred fibers are ultra high modulus fibers (over 60 Msi), specifically M55J fiber by Toray.
Another critical parameter for a composite tank is the ability to withstand repeated temperature changes (thermal cycles) without microcracking. One factor that contributes to microcrack resistance is toughness.
The unique, nontraditional concept explored herein is to use halogenated fiber-reinforced composites to create liquid oxygen tanks. A halogenated material is one which contains one or more elements from the halogen family (column 7A in the Periodic Table of Elements) in its chemical structure. Halogens of particular interest include bromine, chlorine, and fluorine. These elements form chemically stable bonds which enhances a material's ability to be flame resistant and compatible with oxygen and other reactive fuels. A composite material may be halogenated by incorporating halogens various stages of the fabrication process including the neat resin formulation, prepreg processing, and/or cure. A more complete definition of these processes in described in the section titled “Detailed Description”.
Several halogenated resins and composites have been subjected to an extensive battery of tests for their sensitivity to reaction in the presence of oxygen. Historically, the approach was to test the material in the standard mechanical impact test in liquid oxygen (LOX). If the material had an impact threshold of 72 foot-pounds, it was acceptable for use in oxygen environments, such as launch vehicle LOX tanks. If the material's threshold was less than 72 foot-pounds, it typically was not used. Due to limitations in the testing as well as differences in the material structures between metals and composites, standard high strength composite materials typically have not been able to pass at this level when tested at RLV tank wall thicknesses. The approach taken here, which was developed in conjunction with NASA, was to use the standard mechanical impact test to rank composites with respect to each other. Furthermore, an evaluation of the compatibility of composites in oxygen environments would only be determined after testing composite materials with respect to specific ignition mechanisms while in the presence of oxygen. The ignition mechanisms tested included pressurized mechanical impact, particle impact, puncture, puncture of damaged, oxygen-soaked samples, electrostatic discharge, friction, and pyrotechnic shock. If the material could withstand ignition in these environments, it could possibly be considered oxygen compatible.
Halogenated materials which have been evaluated in the standard mechanical impact test include brominated epoxy resin and composite systems as well as a fluorinated resin and composite system. In addition to these candidates, which contai
Ely Kevin Wilbur
Graf Neil Anthony
Kirn Elizabeth P.
Dinh T.
Garvey, Jr. Charles C.
Garvey, Smith, Nehrbass & Doody, L.L.C.
Jordan Charles T.
Lockheed Martin Corporation
LandOfFree
Halogenated composites for oxygen systems does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Halogenated composites for oxygen systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Halogenated composites for oxygen systems will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2962920