Hall sensor for stress and temperature measurements in...

Electricity: measuring and testing – Magnetic – Magnetometers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S225000, C327S511000

Reexamination Certificate

active

06362618

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a Hall sensor comprising a device for orthogonally switching the Hall sensor supply current as well as the Hall voltage tapping, whereby the geometry of the Hall plate in the orthogonal positions for the Hall voltage determination is identical, comprising also a summation device to which the Hall voltage values of the orthogonal positions are sent for determining an offset-compensated Hall voltage value.
Hall sensors are used for measuring magnetic fields. The Hall sensor is especially embodied as a monolithic integrated component which comprises the Hall sensor, the current supply, and the electronic evaluation circuit for the Hall voltage. For manufacturing this combined circuit, conventional silicon semiconductor technology is conventionally used which corresponds to the common bipolar or MOS manufacturing processes.
A known disadvantage of silicon as a Hall detector material is the great effect of mechanical loading (the so-called stress), i.e., the piezoelectric effect and/or piezoresistive effect (permanent resistor changes upon deformation). These result in offset voltage errors which are caused by the mechanical stresses in the crystal structure and the direction-dependent Hall sensitivity. For this reason, offset-compensated Hall sensors, especially Hall sensors with orthogonal switching are known (see, for example, European Patent Document 0 548 391). The basic idea is that a rotation-symmetrical, for example, square, Hall plate is electrically switched by 90° and the resulting measured values are added or subtracted. For determining the offset error, the Hall plate can be viewed in approximation as a bridge circuit. For an ideal or true behavior as a bridge circuit for this orthogonal switching, the offset error occurs always with the opposite sign so that overlying the two orthogonal Hall voltages thus the substantially completely compensates the offset error in this manner. Both orthogonal measurements are thus performed with the same identical structure and a single stress profile. In this manner, the stress, as mentioned above, can be compensated.
The mechanical stress which acts on the Hall sensor with the result of an undesirable piezo voltage thus causes offset problems. Such mechanical stress can result, for example, after potting of the Hall sensor in a module. Also, a pressure application onto the Hall plates or the circuit can result in internal mechanical stress. However, in certain situations it is important to know the magnitude of this stress. The problem is that the precise value of the stress for different Hall sensors is not reproducible and thus must be measured for each Hall sensor individually in order to be able to evaluate the stress after potting of the Hall sensor, i.e., to measure it or even compensate it when using the Hall sensor.
Furthermore, it is partially important that in addition to the magnitude of the stress also the temperature of the Hall sensor is known in order to provide compensation of these errors.
Based on this, it is an object of the present invention to be able to perform, in addition to the conventional magnetic field measurement by the Hall sensor, also a measurement of the stress present within the Hall sensor and/or of the temperature of the Hall sensor.
SUMMARY OF THE INVENTION
The technical solution for measuring the stress is characterized in that the Hall voltage values of the orthogonal positions are supplied to and/or processed in the summation device such that the portions of the Hall voltage values caused by the magnetic field are compensated and that only the portions of the Hall voltage values caused by the offset can be measured.
This provides a Hall sensor with integrated stress measurement. The basic idea of the invention is that as an alternative to the conventional measurement of the magnetic field by the Hall sensor with a respective switching of the Hall plate terminals stress can be measured. For this stress measurement the optionally present magnetic field is compensated and is thus not measured. For orthogonal switching, the offset error will occur always with the same sign so that overlying of the two orthogonal Hall voltages, in contrast to the magnetic field measurement, will not result in a compensation of the offset error in the subsequent signal processing unit. However, the magnetic field portions of the orthogonal Hall voltages are compensated because they occur with different signs. The thus measured stress in the Hall sensor can be used for examining and testing the total system. Furthermore, the stress signal can be used for compensation of errors. Technically, this can be realized in that the Hall sensor can be switched by external control signals to the respective measurement value output. Accordingly, it is possible with already present switching means to switch from output of magnetic field to the output of internal mechanical stress so that the stress of the Hall plate is determined. The embodiment thus allows a separate measurement of the magnetic field and of the stress.
A technical realization of the magnetic field measurement is that an orthogonal switching is still performed for the stress measurement but with a 90° rotation with respect to the magnetic field measurement of the Hall plate supply current for the two half phases. In the second half phase the tapping of the Hall voltage remains unchanged (so that the signs for the Hall voltage at the input of the differential amplifier will not change), but the direction of the provided supply current for the Hall sensor in comparison to the magnetic field measurement is reversed. The current flow direction through the Hall plate is thus reversed for the stress measurement in comparison to the magnetic field measurement. The already disclosed consequence is that the offset cannot be compensated, as was the case in the magnetic field measurement, but that the offset caused by the stress remains as the resulting value independent of the magnetic field which is compensated because of the two orthogonal measurement values.
As a technical solution for measuring the temperature, at least one current present within the circuit of the Hall sensor and having a predetermined temperature coefficient is used. Its voltage drop at a resistor is used for temperature measurement. Preferably, a single current present in the circuit of the Hall sensor with a predetermined temperature coefficient is used. It is also possible to employ two currents present within the circuit of the Hall sensor which are added or subtracted and have temperature coefficients that differ from one another.
Here the basic idea is also that in addition to the conventional magnetic field measurement a temperature measurement is performed without having to perform at the same time a magnetic field measurement. The digital temperature measurement with simultaneous elimination of the magnetic field measurement employs one or two currents present in the Hall sensor circuit and evaluates them with respect to their behavior with predetermined different temperature coefficients. As an example for generating temperature dependent currents in connection with monolithic integrated Hall sensors reference is made to European Patent Document 0 525 235. When employing a single current, a current with a predetermined temperature coefficient can be used. A second current with a different temperature coefficient can be switched to this first current. With a weighted addition or subtraction of the two currents with their different temperature coefficients, different, temperature dependant currents can be generated, i.e., currents with different temperature coefficients or currents which for a certain reference temperature change their sign (compare FIG.
4
). An orthogonal switching is not required during temperature measurement because the switching currents within the Hall sensors are used and not the Hall voltages. The current supply points and voltage tapping at the Hall plate are identical for the temperature measurement. Th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hall sensor for stress and temperature measurements in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hall sensor for stress and temperature measurements in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hall sensor for stress and temperature measurements in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2834657

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.