Hall effect rotation sensor for a throttle valve unit

Fluid handling – With indicator – register – recorder – alarm or inspection means – Position or extent of motion indicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C251S129110, C251S248000, C324S207200, C324S207250

Reexamination Certificate

active

06283150

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of position devices. More particularly, it concerns a position device for a throttle valve unit, in which a throttle valve held by a throttle valve shaft is arranged adjustably in a housing unit that includes at least one Hall-effect angular rotation sensor unit that is arranged on the throttle valve unit. The sensor unit includes a stationary unit, a moving unit that can be moved relative to the stationary unit, a drive unit, and a transmission that is arranged between the moving unit and the drive unit. The housing unit encloses, at least partially, the stationary unit and the moving unit. Even more particularly, the invention concerns a Hall-effect angular rotation sensor device that includes a stationary unit and a moving unit that can be moved relative to the stationary unit. The housing unit encloses, at least partially, the stationary unit and the moving unit.
The present invention also relates generally to the field of adjusting devices. More particularly, it concerns an adjusting device for a throttle valve unit with a throttle valve, which is adjustably contained with a throttle valve shaft in a throttle valve housing. That housing contains at least a Hall-effect angular rotation sensor unit that is coupled with the throttle valve unit including: a stationary unit, a mobile unit that can be moved in relation to the stationary unit, a drive unit, a transmission that is positioned between the mobile unit and the drive unit, and a housing element that encloses at least partially the stationary and the mobile units and the transmission.
2. Description of Related Art
An adjusting device of particular interest is described in WO 95 14 911 A1. It consists of a throttle valve that is enclosed by a throttle valve housing. The throttle valve with a throttle valve shaft is arranged rotatably in the throttle valve housing. An angular rotation sensor, a transmission unit, and a motor unit (that are connected to each other) are arranged in a sensor housing. A specially-configured housing for electronic components contains a circuit unit separately. The individual housings can be stacked together. The angular rotation sensor consists of a stationary element, relative to which a rotating element can be moved. The stationary element is a stator element consisting of two partial, half-moon shaped stator elements, between which there is a distancing gap in which a Hall sensor is located. The rotating element is a ring magnet element that is retained by a magnet retaining unit connected to a shaft.
Although this adjusting device has exhibited at least a degree of utility, its assembly expense may be very high. In addition, it is not possible to mount the angular rotation sensor, the motor, and the transmission easily on different types of throttle valve units.
In WO 98 55 828 A1 an angular rotation sensor is described in which stator elements and a magnet element are configured in the shape of partial ring segments. While this configuration reduces the quantity of material needed to produce these parts, manufacturing and assembly costs may be very high.
Accordingly, and in view of the shortcomings listed above, it would be advantageous to develop an adjusting device and an angular rotation sensor device that are easy to manufacture, easy to assemble, and easy to connect. This task is solved by a position device and by an angular rotation sensor device according to the present disclosure.
SUMMARY OF THE INVENTION
Certain advantages accomplished by the invention reside in that stator elements may be configured as partial ring stator segments, and a ring magnet element may be configured as a partial ring magnet segment. Such a design advantageously saves material. The integration of these parts into units of an angular rotation sensor makes subsequent adjustments unnecessary, saving valuable assembly time. The special configuration of the partial ring magnet segment and a three-piece division of the stator into three partial ring stator segments (and their special correlation with each other) constitutes an advantageous design of an angular rotation sensor. Such a design makes highly precise measurements possible.
In an angular rotation sensor device according to one embodiment of the present disclosure, the moving element may be a toothed gear segment of a transmission. This toothed gear segment may be mounted on a throttle valve shaft of a throttle valve. The movable element, however, may also be configured in a different way and may be part of another device (e.g., part of a belt tightener or the like). The variable configuration of the rotatable element makes it possible to combine it with a multitude of different systems used to measure an angle of rotation.
In one embodiment, the first and the second partial ring stator segments, as well as the partial ring magnet segment and the third partial ring stator segment, may be positioned in one plane at least partially side by side. In another embodiment, they may be positioned at least partially on top of each other. With the benefit of the present disclosure, it will be apparent to those having skill in the art that other configurations may also be utilized.
In one embodiment, when the toothed gear segment rotates from a zero position to an end position, the partial ring magnet segment and the third partial ring stator segment may assume a position relative to the first and the second partial ring stator segments in which they are positioned at least partially overlapping each other in a zero position and almost completely overlapping each other in an end position. With partial segments that lie in one plane, the partial ring magnet segment and the third partial ring stator segment move like a sickle past the first and second partial ring stator segments (that also act like a sickle), starting at the tips, and past each other either side by side or one underneath the other, until they reach the ends of the two sickles. In this embodiment, the Hall-effect IC switch is positioned at the most effective point of movement of these two sickle-shaped partial elements.
The first and the second partial ring stator segments, as well as the partial ring magnet segment and the third partial ring stator segment, feature sickles that are as long as a segment of a circle between about 80° and about 180°. In one embodiment, a circle segment of about 115° was found to be the variant that is optimum for measuring.
In one embodiment, the partial ring magnet segment may be configured as a magnet of opposite polarity. This reduces the total height of the angular rotation sensor device by about one-half. In one embodiment, the angular rotation sensor device with its parts and transmission may be enclosed, at least partially, by a sensor housing element of the housing unit. The toothed gear segment may be coupled in the sensor housing element to a spring element that is also contained in the sensor housing element. This guarantees a well-defined end position.
In order to be able to better adjust individual parts, plastic material may be used. If the sensor housing element is molded out of plastic material, the first and the second partial ring stator segments may be molded into it during the same molding process. When forming the toothed gear segment out of plastic material, the partial ring magnet segment and the third partial ring stator segment may be molded into the plastic material as well. Molding into plastic saves additional adjusting effort and facilitates the main assembly of the basic elements of the angular rotation sensor device.
In one embodiment, the throttle valve with the throttle valve shaft may be contained in a throttle valve housing of the housing unit. The sensor housing element may be placed on the throttle valve housing, and the toothed gear segment may be plugged onto the throttle valve shaft. Such a two-piece configuration makes it possible to manufacture an angular rotation sensor with a transmission, etc. at a different site t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hall effect rotation sensor for a throttle valve unit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hall effect rotation sensor for a throttle valve unit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hall effect rotation sensor for a throttle valve unit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2435431

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.