Radiation imagery chemistry: process – composition – or product th – Radiation modifying product or process of making – Radiation mask
Reexamination Certificate
2001-04-26
2003-07-29
Rosasco, S. (Department: 1756)
Radiation imagery chemistry: process, composition, or product th
Radiation modifying product or process of making
Radiation mask
Reexamination Certificate
active
06599667
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a photomask used in manufacturing high density integrated circuits and the like, including LST and VLSI, and to a blank for a photomask for manufacturing the photomask, and particularly relates to a halftone phase shift photomask in which a projected picture in minute dimensions can be obtained and a blank for a halftone phase shift photomask to facilitate the manufacture of the phase shift photomask.
2. Description of the Related Art
Semiconductor integrated circuits such as IC, LSI and VLSI are manufactured by repeating a lithography process using a photomask. Particularly, the use of a phase shift photomask as shown in, for example, EP 0 090 924A2 (JP-A-58-173744, JP-B-62-59296) has been considered in order to form a circuit with minute dimensions.
Various kinds constructions have been proposed as the phase shift photomask. Particularly, in view of the possibility of practical use in early stage, halftone phase shift photomasks such as shown in, for example, JP-A-4-136854, U.S. Pat. No. 4,890,309 has been widely noticed.
Further, as disclosed in JP-A-5-2259, and JP-A-5-127361, some proposals have been made for construction and materials for increasing the yield and cost reductions may result by virtue of the reduced number of steps in the manufacturing processes.
As described below in detail, the halftone phase shift photomask comprises a transparent substrate, a halftone phase shift film, and optionally a light shading film.
In a halftone phase shift lithography, an area would be caused where the adjoining shots (transferring ranges by each exposure) on a wafer overlap each other when the “step-and-repeat” exposure, using equipment such as a stepper or scanner, is performed. Since the remaining pattern parts, differing from a conventional chromium mask, are also semitransparent, the overlapped areas are exposed to light by repeating multiple exposures.
Further, in a halftone phase shift lithography, there was a problem such that a subpeak in light intensity might occur in the neighborhood of an exposure pattern to be transferred when a wafer was exposed, and thus the subpeak may deform the exposure pattern predefined.
This problem is remarkable especially in the neighborhood of a large come-off pattern. Consequently, in a large come-off pattern which can be sufficiently resolved without using a phase shift lithography technique, its transferring property is rather inferior to a conventional type of using chromium mask.
For solutions to these problems, a halftone phase shift lithography method is generally adopted in transferring to a wafer, in which a halftone phase shift mask is used where a halftone phase shift film and a light shading film (which involves films of giving substantially complete light shading and film by which high contrast can be obtained, hereafter also referred to as a “light shading layer” or a “substantial light shading film”), both of which being patterned with the predetermined pattern, are layered onto the substrate in this order.
A halftone phase shift mask having such a light shading film is manufactured by using a blank where a halftone phase shift film and a light shading film are layered in this order onto a transparent substrate, and patterning the light shading film, separately from the patterning of a halftone phase shift film.
In the following, the conventional and typical manufacturing method of a halftone phase shift mask having the light shading film will be briefly explained.
First, on a blank in which a halftone phase shift film and a light shading film has been layered in this order on a transparent substrate in advance, a desired first resist pattern is formed by using the conventional lithography technique. Then, by using the first resist pattern as an anti-etching mask, both of a halftone phase shift pattern and a light shading film pattern are etched in a first etching step where the light shading film and the halftone phase shift film are etched sequentially in this order.
After the first etching step, following the removal of the first resist pattern and the rinsing of the substrate, a second resist pattern is further formed by using the conventional lithography technique. Then, a second etching step is performed, wherein only the light shading film is etched and patterned by using the second resist pattern as another anti-etching mask in order to form the light shading film pattern.
In the first etching step, the whole pattern to be formed on the mask are formed, and in the second etching step, a pattern is formed so that a light shading film is removed only in an area where a halftone phase shift effect is required.
As materials for the halftone phase shift film, for the purpose of possessing good characteristics with respect to the film forming property, patterning property, chemical stability after patterning, and durability, various kinds of materials, for example, an oxide film or nitride film of tantalum as disclosed in JP-A-7-134396 and JP-A-7-281414, films of metal silicide based materials including tantalum silicide based materials as disclosed in JP-A-6-83027 and molybdenum silicide based materials as disclosed in JP-A-6-332152, U.S. Pat. No. 5,474,864 (JP-A-7-140635) and U.S. Pat. No. 5,482,799 (JP-A-7-168343), films of chromium based materials as disclosed in JP-A-7-5676, JP-A-6-308713, JP-A-7-28224 and JP-A-7-110572, have been proposed and already put into use commercially.
On the other hand, as material for the light shading films (films providing substantially complete light shielding or film of giving films providing high contrast), films of chromium based materials have been used in view of their film forming properties, processability, film stability and the like.
For shaping the halftone phase shift film, the dry etching technique may be generally used. The dry etching technique can be roughly divided into two types, i.e., chlorine types and fluorine types. In actual use, owing to the kind of materials used for the film, one type would be selected promptly and thus it is necessary to know how to use them properly.
When the halftone phase shift film is formed with a material of chromium based film, chlorine dry etching is used. Whereas, the fluorine dry etching is usually used when the halftone phase shift film is formed with one of metal silicide based materials including tantalum silicide and molybdenum silicide, or formed with tantalum based materials, although the chlorine dry etching may be used in some cases.
Next, chromium based materials which are used as the light shading films have to be dry etched by a chlorine based gas. Therefore, when using one etching chamber, the fluorine dry etching for a silicide used as the halftone phase shift film should be followed by a gas replacing operation in the course of the aforementioned first etching step, which can be observed in the conventional and typical manufacturing method of the halftone phase shift mask having the aforementioned light shading film, and which results in complexities of the process and the etching apparatus's construction as well as troublesome operations.
By using two etching chambers, it would be possible to modify the first etching step so that the dry etching of the light shading film in an etching chamber is followed by the transfer of the treated substrate from the chamber to another chamber in order to dry-etch the silicide in the latter chamber. That is, it is possible to take such a way that the first etching step is discontinued in its course so as to transfer the substrate to the next chamber. However, the way also results in complexity of the etching apparatus's construction, and an enhancement in cost.
SUMMARY OF THE INVENTION
As described above, with respect to a halftone phase shift mask, it has been desired that a light shading film (a film of giving substantially complete light shading or film by which high contrast is obtained) and a halftone phase shift film can be dry-etched with using a gas, or gases of the same type reg
Fujikawa Junji
Hatsuta Chiaki
Kinase Yoshinori
Motonaga Toshiaki
Nakagawa Hiro-o
Dai Nippon Printing Co. Ltd.
Lada & Parry
Rosasco S.
LandOfFree
Halftone phase shift photomask and blank for halftone phase... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Halftone phase shift photomask and blank for halftone phase..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Halftone phase shift photomask and blank for halftone phase... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3102530