Hair fixative composition containing an anionic polymer

Drug – bio-affecting and body treating compositions – Live hair or scalp treating compositions – Polymer containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S045000, C424S047000, C424S070100, C424S070160, C424S070200, C424S070400, C424S070500

Reexamination Certificate

active

06569413

ABSTRACT:

TECHNICAL FIELD
This invention relates to compositions and methods for treating hair. More particularly, this invention concerns a cosmetically acceptable hair fixative composition containing an anionic polymer and a method of using the composition for setting hair.
BACKGROUND OF THE INVENTION
Natural hair tends to return to its initial shape or position so it does not hold a set well. Hair styling and fixative products help build the interactive forces between hair fibers, which give adherence to the adjacent hairs so they can keep a particular shape or configuration as the polymer dries. In the past, hairsprays have dominated the styling aid market because of easy use, good styling and simple application. Pump hair sprays, hydrocarbon aerosols and carbon dioxide aerosols are three major types of sprays. However, hairsprays have largely used propellants and alcohol as their major components which are considered Volatile Organic Compounds (VOC).
Since government regulations are driving down permissible levels of VOC, the industry has reduced the VOC of their products. In most cases, this results in an increase in water content of the formula. But the increase in water content creates many problems such as resin solubility, increased viscosity, loss of holding power, increased initial curl droop and tackiness. In addition, increasing the water content of hair spray can also cause can corrosion and solvent/propellant incompatibility in aerosol formulations. Therefore, non-aerosol and water-based styling aid products such as styling gel, glaze, spray foam, styling cream and waxes, and styling lotion have been gradually replacing hairsprays.
High molecular weight polymers have been used as hair fixatives since 1940 and they have played the key role of holding the hair in place during the styling process and in the fixing step. Over the years, most of the hair fixative polymers were designed to be soluble in alcohol or propellants, and usually these polymers have poor solubility in water. As a result, their performance as a hair fixative is affected when water is incorporated into the formulation. Cationic polymers such as polyquatemium-11 and polyquatemium-4 are excellent film-forming polymers, but their high substantivities make them difficult to wash out. Consequently, anionic polymers are most frequently used.
However, because of their high solubility in water, anionic hair fixative polymers are also considered hygroscopic materials that often show poor hair setting properties in high humidity environments. It is thus an object of this invention to develop polymers that have a better balance between the conflicting requirements of water-indifference (good curl retention at high humidity) and water-sensitivity (rapid and complete removal from the hair when rinsed with water).
SUMMARY OF THE INVENTION
In its principal aspect, this invention is directed to a cosmetically acceptable hair fixative composition comprising from about 0.1 to about 10 weight percent, based on polymer solids, of an anionic polymer, wherein the anionic polymer is composed of from about 10 to about 80 mole percent of 2-acrylamido-2-methyl-1-propanesulfonic acid or a base addition salt thereof and from about 90 to about 20 mole percent of one or more anionic or nonionic monomers.
In another aspect, this invention is directed to a method of setting hair comprising
a) applying to the hair an effective setting amount of a cosmetically acceptable hair fixative composition comprising from about 0.1 to about 10 weight percent, based on polymer solids, of an anionic polymer, wherein the anionic polymer is composed of from about 10 to about 80 mole percent of 2-acrylamido-2-methyl-1-propanesulfonic acid or a base addition salt thereof and from about 90 to about 20 mole percent of one or more anionic or nonionic monomers; and
b) placing the hair in the desired configuration.
An advantage of this invention is that the anionic polymer performs well under high humidity and is easily removed by water.
Another advantage is that the anionic polymer has excellent compatibility with an anionic thickening system.
Another advantage is that the anionic polymer gives a silky feeling after the hair is dried.
DETAILED DESCRIPTION OF THE INVENTION
Definitions of Terms
“Anionic monomer” means a monomer as defined herein which possesses a net negative charge above a certain pH value. Representative anionic monomers include base addition salts of acrylic acid, methacrylic acid, itaconic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, sulfopropyl acrylate or methacrylate or other water-soluble forms of these or other polymerizable carboxylic or sulfonic acids, sulphomethylated acrylamide, allyl sulphonate, styrene sulfonic acid, sodium vinyl sulphonate, and the like. Preferred anionic monomers are acrylic acid and 2-acrylamido-2-methyl-1-propanesulfonic acid.
“Base addition salt” means the salt resulting from reaction of a carboyxlic acid (—CO
2
H) group with a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation or tetraalkylammonium cation, or with ammonia, or an organic primary, secondary, or tertiary amine of sufficient basicity to form a salt with the carboxylic acid group. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Representative organic amines useful for the formation of base addition salts include, ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, and the like. Preferred base addition salts include the sodium and ammonium salts.
“IV” stands for intrinsic viscosity, which is RSV extrapolated to the limit of infinite dilution, infinite dilution being when the concentration of polymer is equal to zero.
“Monomer” means a polymerizable allylic, vinylic or acrylic compound. The monomer may be anionic, cationic or nonionic. Vinyl monomers are preferred, acrylic monomers are more preferred.
“Nonionic monomer” means a monomer as defined herein which is electrically neutral. Representative non-ionic, water-soluble monomers include acrylamide, methacrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, N-isopropylacrylamide, N-vinylformamide, N-vinylmethylacetamide, N-vinyl pyrrolidone, hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, N-t-butylacrylamide, N-methylolacrylamide, and the like.
“RSV” stands for Reduced Specific Viscosity. Within a series of polymer homologs which are substantially linear and well solvated, “reduced specific viscosity (RSV)” measurements for dilute polymer solutions are an indication of polymer chain length and average molecular weight according to Paul J. Flory, in “
Principles of Polymer Chemistry
”, Cornell University Press, Ithaca, N.Y., © 1953, Chapter VII, “
Determination of Molecular Weights
”, pp. 266-316. The RSV is measured at a given polymer concentration and temperature and calculated as follows:
RSV
=
[
(
η
/
η
o
)
-
1
]
c
η
=
viscosity of polymer solution
η
o
=
viscosity of solvent at the same temperature
c
=
concentration of polymer in solution.
The units of concentration “c” are (grams/100 ml or g/deciliter). Therefore, the units of RSV are dL/g. In this patent application, a 1.0 molar sodium nitrate solution is used for measuring RSV, unless specified. The polymer concentration in this solvent is 0.045 g/dL. The RSV is measured at 30° C. The viscosities &eegr; and &eegr;
o
are measured using a Cannon Ubbelohde semimicro dilution viscometer, size 75. The viscometer is mounted in a perfectly vertical position in a constant temperature bath adjusted to 30±0.02° C. The error inherent in the calculation of RSV is about 2 dL/g. When two polymer homologs within a series have similar RSV's that is an indication that they have similar molecular weights.
“Solution polymer” means a water soluble anionic polymer as described herein that is prepared by solution polymerization. To conduct a solution polymerization of water soluble monomers, the desired monomers are

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hair fixative composition containing an anionic polymer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hair fixative composition containing an anionic polymer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hair fixative composition containing an anionic polymer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3023770

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.