Surgery – Instruments – Light application
Reexamination Certificate
2000-09-05
2003-07-15
Shay, David M. (Department: 3739)
Surgery
Instruments
Light application
C606S007000, C606S010000, C606S046000, C606S047000, C604S022000, C604S095030
Reexamination Certificate
active
06592575
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to elongated devices for therapeutic or diagnostic procedures in a wall of a patient's heart, particularly to the treatment of myocardial tissue experiencing ischemic conditions, by revascularization of such myocardial tissue.
Myocardial revascularization typically involves formation of one or more channels in a patient's heart wall which defines the heart chamber, particularly the left ventricle. The first trials of the revascularization process were apparently made by Mirhoseini et al. See for example the discussions in Lasers in General Surgery (Williams & Wilkins; 1989), pp 216-223. Other early disclosures of this procedure are found in an article by Okada et al. in Kobe J. Med. Sci 32, 151-161, October 1986 and in U.S. Pat. No. 4,658,817 (Hardy). Both of these references describe intraoperative revascularization procedures which require the chest wall to be opened and which include formation of the revascularization channels completely through the heart wall, i.e. the epicardium, the myocardium and the endocardium.
Copending application Ser. No. 08/078,443, filed on Jun. 15, 1993 (Aita et al.), which is incorporated herein in its entirety, describes an intravascular system for myocardial revascularization which is introduced percutaneously into a peripheral artery and advanced through the patient's arterial system into the left ventricle of the patient's heart. The revascularization channels are not usually formed through the entire heart wall but only the endocardium and into the myocardium from within the left ventricle. This procedure eliminates the need of the prior intraoperative procedures to open the chest cavity and to penetrate through the entire heart wall in order to form the channel through the endocardium into the myocardium. While the percutaneous method and system for introducing the revascularization device developed by Aita et al. represents a substantial advance, one of the difficulties in forming revascularization channels from within a patient's left ventricle by means of a percutaneously introduced revascularization system has been accurately directing the distal tip of the channel forming device to a desired region of the patient's endocardium and maintaining the placement of the distal end of the channel forming device against a desired region of the ventricular wall at a proper angle, i.e. perpendicular or near perpendicular to the endocardium, while the heart is beating. Maintaining placement of the operative distal tip of the device is important because lateral displacement can affect the channel formation within the heart wall. The anatomy of human hearts and particularly the relationship of the ascending aorta and the left ventricle can vary considerably from patient to patient. The entry angle from the ascending aorta through the aortic valve into the left ventricle of a human heart does not facilitate the easy access to the free wall of the patient's heart which in substantial part defines the left ventricle. Direct entry from the ascending aorta through the aortic valve usually leads into the cordae tendonae of the mitril valve and to the posterior sulcus adjacent to the inferolateral papillary muscle to which the cordae are attached. As a result, the distal extremity of a guiding catheter advanced into the left ventricle through the aortic valve from the ascending aorta can inadvertently become entrapped or entangled with the cordae tendonae or be positioned in the posterior sulcus adjacent to the base of the inferiolateral papillary muscle.
What has been needed is an improved delivery system and method for delivering a channel forming or other ablation device within the patient's heart chamber, particularly via percutaneous introduction into the patient's vasculature, which provides for an easy and accurate placement of the device against a desired region of the endocardium at the desired orientation and the maintenance of the position of the device within the patient's heart chamber while tissue is being ablated and the heart is beating. The present invention satisfies these and other needs.
SUMMARY OF THE INVENTION
The present invention is directed to a system for delivering an elongated therapeutic or diagnostic device into the interior of a patient's heart chamber that provides access to a wide region of the patient's endocardium defining at least in part the heart chamber. Additionally, the system disclosed accurately places and effectively holds the operative distal end of the device at a desired location within the patient's heart chamber. One embodiment of the present invention may be used to form a channel into the wall defining the heart chamber or to perform other treatments or diagnosis. The system also allows the position of the operative distal end of the device to be readily changed to facilitate performing therapeutic or diagnostic procedures at a plurality of locations within the heart chamber at a desired perpendicular or near perpendicular orientation with respect to the patient's endocardium.
The guiding catheter system of the invention generally includes a first guiding or delivery catheter which has a relatively straight main shaft section and a shaped distal shaft section having a discharge axis selected so that is generally aligned with or parallel to the longitudinal axis of the patient's left ventricle, and a second guiding or delivery catheter slidably and rotatably disposed within an inner lumen of the first guiding catheter and provided with a shaped distal section configured to have a discharge axis which is normal or near normal to the patient's endocardial layer which defines in part the left ventricle.
In accordance with the present invention the first guiding catheter has proximal and distal ends, a port in the distal end and an inner lumen extending within the catheter to the port in the distal end. The first guiding catheter has a relatively straight main shaft section and a preshaped distal section configured to point in a direction so that the discharge axis of this catheter is aligned with or parallel or near parallel to the longitudinal axis of the left ventricle. For many applications the first guiding catheter is about 90 to about 130 cm, preferably about 100 to about 120 cm in length.
In one presently preferred embodiment of the invention, the first guiding catheter has a main shaft section and a shaped distal section with a proximal and distal angled segments which provide a discharge axis approximating the longitudinal axis or long dimension of the heart chamber.
In this embodiment the first segment of the distal shaft section is at an angle of about 95° to about 160°, preferably about 100° to about 140° with respect to a proximally adjacent second segment of the distal shaft section and the proximally adjacent second segment is at an angle of about 95° to about 160°, preferably about 100° to about 135° with respect to either the proximally adjacent main shaft section or a third segment of the distal shaft section proximally adjacent to the second segment. If there is a third segment of the distal section, it is at an angle of about angle of about 110° to about 170°, preferably about 120° to about 150° with respect to proximally adjacent main shaft section. The first and second segments should each be about 0.5 to about 5, preferably about 0.5 to about 4 cm in length, with the total length of the shaped distal section with two segments being about 2 to about 6 cm. If the distal section has a third segment, it should have a length of about 1 to about 5 cm, preferably about 2 to about 4 cm. The length of the shaped distal section with three segments should be about 3 to about 8 cm, preferably about 4 to about 7 cm.
In another presently preferred embodiment, the shaped distal section of the first guiding catheter has a single angled segment which provides a discharge axis approximating the longitudinal axis or long dimension of the heart chamber. In this embodiment the
Javier, Jr. Manuel A.
Kesten Randy J.
Gibson Dunn & Crutcher, LLP
Shay David M.
LandOfFree
Guiding catheter system for ablating heart tissue does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Guiding catheter system for ablating heart tissue, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Guiding catheter system for ablating heart tissue will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3098511