Guidewire filter device

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06355051

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of guidewires, and more particularly to a blood filter guidewire device to be used in percutaneous carotid angioplasty procedures for treatment of carotid artery stenosis and any other hollow conduit disorders.
2. Description of the Related Art
Carotid artery stenosis is a narrowing of the carotid artery due to build-up of atheromatous plaque. Carotid artery stenosis is the most common cause of stroke and stroke is the third leading cause of death and the number one cause of long-term disability in the United States. The standard treatment for patients with carotid artery stenosis is carotid endarterectomy (CEA). CEA is a surgical procedure that involves open exposure and incision of the carotid artery followed by removal of the atheromatous plaque. Currently, physicians perform 120,000 CEA procedures annually in the United States.
A newer procedure called percutaneous transluminal angioplasty (PTA) of the carotid artery has been advocated as an alternative to CEA for the treatment of carotid artery stenosis. The procedure involves insertion of a balloon tipped catheter into the stenotic region of the carotid artery. The physician inflates the balloon against the stenotic artery wall to dilate the arterial lumen, thereby improving blood flow through the vessel.
PTA may be a viable alternative to and/or possible replacement of CEA. However, preliminary published results of PTA procedures reveal higher stroke/death rates compared to those achieved with CEA. The increased stroke rates result from the dislodgment of intra-arterial embolic material during the angioplasty procedure.
There has been some work done on devices to deal with this situation. For example, U.S. Pat. No. 4,723,549 to Wholey et al. describes a catheter designed to slide over a guidewire for dilating occluded or stenotic blood vessels. The Wholey et al. device is a balloon catheter with a collapsible filter portion. The collapsible filter is deployed by inflating a filter balloon positioned near the distal end of the catheter. The catheter also has a dilating balloon set back proximally from the filter balloon for compressing the stenosis. The collapsible filter device comprises a plurality of resilient ribs secured to the catheter at the distal end of the catheter and extending generally longitudinally toward the dilating balloon. Inflation of a filter balloon pushes the ribs outwardly against the vessel wall to stretch filter material secured to the ribs across the vessel to form a cup shaped trap. This filter is supposed to capture fragments of a stenosis loosened by the dilating balloon. Upon deflation of the filter balloon, the resilient ribs retract against the catheter to retain the trapped fragments during withdrawal of the catheter. In the preferred embodiment of the Wholey et al. device, the proximal ends of the ribs projecting generally toward the dilating balloon are moveably secured to a ring that slides along the outside surface of the catheter. In use, the cup-shaped trap filter is extended and then the dilating balloon is inflated. Blood flow established by deflation of the dilating balloon carries stenosis fragments into the filter.
There are several shortcomings with the Wholey et al. catheter. For example, in the first embodiment, nothing positively moves the ribs and the carried filter to the retracted position against the walls of the catheter. Furthermore, the free ends of the ribs could very well entangle with each other, or possibly damage the vessel walls, and/or inadvertently release captured particles from the trap filter. In the second embodiment, a slideable ring moveably retains proximal ends of the ribs. This second ring is slidably positioned on the outside surface of the catheter. In both embodiments, all the filter components are located to the exterior or on the outside of a rather large catheter. During withdrawal of the catheter, there is a possibility that free proximal ends of the ribs (or the slideable ring) can be caught on the vessel walls and thus reopen the trap filter. Moreover, the Wholey et al. catheter, by integrating the trap filter into the design of the catheter gives a physician less flexibility in where the filter is to be positioned relative to the stenosis. Indeed, it would appear that the excessively complex design of Wholey et al would make the device too large to fit and function within the carotid artery.
U.S. Pat. No. 5,695,519 to Summers et al. discloses a distal intravascular filter for filtering blood and entrapping and retaining embolic debris. The intravascular filter includes a small diameter hollow guide wire or tube capable of percutaneous placement beyond a carotid stenosis. The distal portion of the tube includes a filter mounted thereon. The filter is deployable from a tightly closed configuration to an open circumference for filtering embolic material from the bloodstream. The filter is deployable between open and closed positions by manipulation of an actuating wire extended from the filter and out the proximal end of the tube. An examination of the design would indicate that at least one major problem with the Summers et al. device is that the actuating wires are too thin. Deployment of the filter mechanism requires pushing the actuating wires along a column of about 175-cm in length. The wires cannot support the force necessary to properly deploy the filter because they cannot be made thick enough to perform their function and constrain to the necessary dimensions of the hollow tube or wire. A second problem is that once the filter is deployed, there is no way to assure that the filter will stay open and be secured against the arterial wall. The system relies on the blood flow to keep it open, which may not be sufficient to maintain an open filter, particularly in a stenotic carotid artery. Thirdly, because of a multitude of moving parts, the system would likely be expensive to produce and difficult to assemble, and would likely encountering similar problems of as that of the Wholey et al catheter, including inability to fit all the parts into a tight space.
There accordingly remains a need for a guidewire filter device that can be used in lieu of conventional guideware during percutaneous carotid angioplasty procedures to capture any dislodged intra-arterial embolic material.
SUMMARY OF THE INVENTION
One object of the invention is to provide a guidewire filter device that is compatible with current carotid angioplasty balloon catheter systems, viz., can be used in place of conventional guidewires.
Another object of the invention is to provide a guidewire filter device in which filter or mesh material is located inside of the guidewire filter rather than outside the guidewire or catheter shaft to provide a relatively smooth exterior surface. This enables smoother passage of the device within the artery and may decrease the risk of possible fragmentation and subsequent emboli of plaque particles of the stenotic lesion and/or damage to the arterial wall.
Yet another object of the invention is to provide a guidewire filter device including a ribbed cage/basket design that expands to seat against the arterial wall, forming a self-supporting and non-collapsing seal for the filter mesh against the arterial wall. Blood and particles will accordingly be required to travel through the filter mesh rather than around it. While the blood and its components will be able to freely travel through the filter mesh, those particles that are larger than the pore size of the filter mesh, e.g. intra-arterial embolic material, will be prevented from traveling further and will be effectively captured.
A further object of the invention is to provide a guidewire filter device in which the filter is deployed by pulling (rather than by pushing) on an actuating wire allowing use of a thinner wire.
A final object of the invention is to provide a guidewire filter device that is simple in design, involves relatively few parts, is economical to manufacture, and that is rel

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Guidewire filter device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Guidewire filter device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Guidewire filter device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2850625

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.