Guidewire

Wireworking – Article making or forming – Electric lamp or electric space discharge device electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06502606

ABSTRACT:

TECHNICAL FIELD
The present invention relates to the field of medical devices and more particularly to guidewires for vascular procedures.
BACKGROUND OF THE INVENTION
Medical guidewires for vascular procedures, such as angioplasty procedures, diagnostic and interventional procedures, percutaneous access procedures, or radiological and neuroradiological procedures in general, traditionally comprise an elongated core element with one or more tapered sections near the distal end thereof and a flexible helical coil disposed about the distal portion of the core element. The distal extremity of the core element or a separate safety ribbon which is secured to the distal extremity of the core element extends through the flexible coil and is secured to the distal end member of the guidewire, which is a rounded member at the distal end of the helical coil. Torquing means are provided on the proximal end of the core element to rotate and steer the guidewire while it is being advanced through a patient's vascular system.
The physician views the progress on a screen and makes the distal end of the guidewire enter and follow tortuous vascular vessels from the entry site through the various vascular branches to the target site by pushing and rotating the proximal end of the guidewire outside of the patient. In connection with the advancement of the guidewire or once the guidewire has been positioned at the desired site, a wide variety of medical devices may be directed to the target site along the guidewire by simply sliding the device over the guidewire and advance the device to the distal end of the guidewire. A typical medical device is a catheter, and very often a catheter and the guidewire are introduced in a common procedure where the guidewire is advanced a distance in front of the catheter, then the catheter is advanced over the guidewire, followed by a further advancement of the guidewire. Following placement of the catheter or other device, the guide wire can be removed if desired.
The flexible coil acts as a protective measure of a suitably large diameter, hindering the guidewire core in damaging the vascular wall. The above mentioned guidewire is known from U.S. Pat. No. 4,619,274 to Morrison whose guidewire has a progressively attenuated diameter. An elongated core element extends from the proximal to the distal ends of the guidewire and has a decreasing cross sectional area in a direction towards the distal end member. A coil is carried by and secured to said core element and has proximal and distal ends. The coil has a diameter which decreases in a direction towards the distal end. The coil is formed of a single helical wound wire which has a diameter which decreases from one end to the other end with the larger diameter beginning in a region closer to the proximal end and the smaller diameter wire ending in a region closer to the distal end.
U.S. Pat. No. 5,001,825 to Halpern describes a fabrication process for a guidewire core where a solid metal wire is drawn down in several stages to have a stepwise decreasing diameter towards the distal end. The core is surrounded by a flexible coil having an outer diameter which decreases near the distal end. The coil consists of a single helical wound wire having a constant cross sectional area.
It is an object of the present invention to provide a guidewire which in its distal area is highly flexible and yet capable of transferring torques applied to the proximal end of the guidewire to the distal end of the guidewire in a very precise manner even when the guidewire follows a loop-shaped course.
SUMMARY OF THE INVENTION
The present invention relates to a guidewire comprising a distal end member and a shaft portion extending in a longitudinal direction from a proximal end towards the distal end member, and at least one helical wound wire extending from a position at the shaft portion to the distal end member. In view of this, the guidewire according to the present invention is characterized in that at least one helical wound group of at least two wires extending side by side has a pitch angle in the range of 35°-76°.
In the prior art guidewires the core element transfers the torque to the distal area of the guidewire, but the core element also restricts the flexibility of the guidewire. When the core element is given a very small diameter in its distal area in order to improve the flexibility, it loses the ability to transfer the torque. When, according to the invention, the flexible coil in the distal end of the guidewire is made of two or more wires which are wound with a pitch angle in the specified range, the wound wires transfer torque and also force components directed in the axial direction of the guidewire to the distal end thereof.
The guidewire surprisingly maintains its capabilities for transferring torque when it follows a tortuous path involving two or more loops. The torque is transferred all the way to the distal end member or tip of the guidewire, meaning that the distal end member can be very precisely steered from the proximal end. If the pitch angle exceeds 80° the ability to transfer torque is lost.
In a preferred embodiment, along a distance of at least 10 cm from the distal end member said at least one helical wound group of wires is the primary or the sole torque-transferring means between the shaft portion and the distal end member. Because the torque is transferred through the helical wound wires the central core can be given very feeble dimensions, thus increasing the flexibility of the distal portion, or it can be completely left out by making at least the most distal 10 cm of the guidewire without a torque-transferring solid metallic core inside said at least one group of wires. If desired there can be a safety ribbon inside the wound wires, connecting the rounded distal end member with a more proximal shaft portion, but such a ribbon will normally not be required.
Due to the very high flexibility, pushability and torquability and the ability of the guidewire to maintain each of these three characteristics even when set in a very tortuous pattern involving two or more tight loops the guidewire can be of use in very small and distant vessels. In order to further enhance use of the guidewire in vessels with small lumen the at least one helical wound group of wires has a smaller outer diameter at the distal end than at said position on the shaft portion.
If the group of wound wires is secured to the shaft, which for example can be of traditional type with a core member or can be another group of wires of larger dimensions, such as by soldering or welding the proximal end of the group onto the shaft the guidewire can be prone to kinking at the transition between the flexible group of wires and the remainder of the shaft. With a view to avoiding this, the said at least one helical wound group of wires preferably extends into the shaft portion towards the proximal end, and even more preferably it extends along a guidewire length at least in the range of 20-50 cm from the distal end. The additional stiffness caused by the attachment of the wire is less disturbing the longer it occurs from the distal end of the guidewire. It is possible to let the group or groups of helical wound wires extend to a position at the proximal end of the guidewire, so that they span the entire guidewire. It is preferred that the wires in said at least one group have a separation from one wire to the next in the group of less than the diameter of the wire. Normally, the wires in the group are placed so close they touch each other.
In one embodiment the at least one of the wires in said at least one group is ribbon-shaped. The widest cross sectional dimension, the breadth of the wire is directed in the longitudinal direction of the guide-wire. It is preferred that the ribbon-shaped wire has rounded edges.
In a preferred embodiment the at least one group of wires is made of from 2 to 8 helical wound wires. A number of the wires are placed next to each other and winded in the same direction. By using several wires their aggregate breadt

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Guidewire does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Guidewire, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Guidewire will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3035506

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.