Guided tissue regeneration plate for use in a process for...

Dentistry – Prosthodontics – Holding or positioning denture in mouth

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S017170

Reexamination Certificate

active

06394807

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the art of dentistry and, more particularly, to devices which relate to the surgical placement of endosseous dental implants in the maxillary or mandibular jaw bone. Still more specifically, this invention relates to the growing of jaw bone in order to obtain adequate volume of osseous structure by using a thin titanium bone plate/screen which is mated to an underlying support bone screw or to a dental implant.
BACKGROUND OF THE INVENTION
The successfull placement of endosseous dental implants has been well documented for over 30 years; however, the success of these endosseous dental implants has been limited by the quality and quantity of existing bone a given patient would present with. Due to the destructive nature of dentures to the underlying jaw bone as well as to the fact that bone that is not internally stimulated by tooth roots will atrophy, the amount of bone in many people is very limited for the placement of dental implants, especially for those who have been missing teeth for an extended period of time.
Bone grafting has become an essential element for the successful treatment of those who do not have enough bone for dental implants. As viable methods, blocks of hip bone have been affixed to the jaw, and freeze-dried demineralized bone protein has been used as a stimulant to cause the patient's bone cells to become active and lay down new bone onto the existing bone areas and into the new bone graft areas. Through experience and research, it has become evident that, for bone grafting to be successful, it must be given an isolated space to grow, protected from muscular pressure, tissue impingement and chewing forces. In order to create this space, many approaches have been proposed. For example, both Syers (U.S. Pat. No. 5,297,563) and Magnusson et al (U.S. Pat. No. 4,961,707) teach the use of a fabric-like membrane which is used over a bony defect. Although this barrier creates an isolated space from the invasion of epithelial cells into the bony defect or bone graft area, it does not create a protected space from chewing forces or tissue pressure.
Morgan (U.S. Pat. No. 5,380,328) teaches the use of a composite perforated titanium mesh layered with polytetrafluoraethylene (PTFE or Teflon®) fibers. Even though this approach would be feasible for creating a protected space in order to grow bone, it has some severe limitations. This material requires the placement of peripheral bone screws into the edges of the meshed piece in order to create a direct fixation of the titanium mesh to the jaw bone and then bowing-up or tenting-up the center area in order to create the protected space. Often, it would not be feasible to place the peripheral bone screws in the peripheral areas for fear of damage to the inferior alveolar nerves or sinus penetration or damage to nearby tooth roots. The protrusion of these screws above the mesh is also of concern as potentially causing a tissue irritation complication with this given procedure.
Furthermore, the difficulty of forming the exact amount of tenting desired with this material is inherently very difficult to control. Additionally, the removal of this material is complicated by the need to surgically dissect much deeper to locate the peripheral screws. This technique would also be expensive and time consuming to emplace due to the need for multiple screws to secure a single mesh.
On the other hand, as will become more apparent below, the guided-tissue regeneration plate support and fixation system contemplated in accordance with the subject invention obtains the ability to place a single screw in the center of the bone graft area, thereby facilitating the selection of a screw height that allows for an exact amount of tenting, thus giving the support where it is needed most. Placement and removal of this device is greatly simplified due to the fact that peripheral screws are not required (although such can be used). The head of the screw ends up being mostly under the plate, thus preventing any concern about screw-head irritation or protrusion. Furthermore, concern about damage to neighboring peripheral structures is eliminated. In general, a much more simplified and cost effective method, apparatus and result are achieved.
Experience with and further development of the guided-tissue regeneration plate support and fixation system has resulted in an important advance which enhances its effectiveness in practice. It has been found that the use of a fine mesh screen spanning open areas of a guided-tissue regeneration support plate results in a faster and more complete bone regeneration of the underlying bony ridge and faster and more healthy growth of the overlying periosteum. The fine mesh screen can be fabricated from any suitable material, resorptive or non-resorptive, and an especially suitable material, especially when a titanium guided-tissue support plate is employed, is fine mesh screen titanium fixed to the support plate by welding, particularly spot or laser welding, by an adhesive or by sintering the two-piece assembly. Alternatively, a functional equivalent to a fine mesh screen region can be obtained by substantially reducing the thickness of predetermined central areas of an imperforate titanium (for example) plate and then perforating the reduced thickness regions with finely spaced apertures.
OBJECTS OF THE INVENTION
It is therefore a broad object of my invention to provide an improved dental implant system.
It is a more specific object of my invention o provide an improved dental implant system which is relatively inexpensive to fabricate and use.
In another aspect, it is an object of my invention to provide a dental implant system which is relatively easy to use to obtain high quality results.
SUMMARY OF THE INVENTION
Briefly, these and other objects of the invention are achieved by a method of growing additional maxillary or mandibular bone in areas of atrophy and by the use of a related device to accomplish the task. A pliable guided-tissue regeneration plate, which holds it shape after being bent, is employed as a mating component to a support screw or a dental implant and is secured to the jaw structure by fixation of the guided-tissue regeneration plate at a predetermined distance above or away from the surface of the bone to the support screw or dental implant in order to create a supported and protected space between the underside of the gum tissue and the original bone which is free from muscular and chewing pressure in order to promote bone growth.
The guided-tissue regeneration plate support and fixation system can be mated with a support screw or screws which are tenting screws designed to be mated with and then become intimately a part of the guided-tissue regeneration plate in order to grow bone in the space created by the guided-tissue regeneration plate system prior to implant placement. Additionally, the guided-tissue regeneration plate system can be utilized during implant placement by creating space adjacent to a dehisced implant by fixation of the guided-tissue regeneration plate directly to the implant in order to grow bone height or width. A guided-tissue regeneration plate according to the present invention can also be used by affixing it to an existing dental implant that has been previously placed and has undergone bone loss in order to regenerate new bone. The guided-tissue regeneration plate support and fixation system is adapted to be surgically removed after the bone has grown under its surface at a later uncovering or implant placement surgery. In an alternative preferred embodiment which provides particularly successful results and which results in faster and better bone regeneration and periosteum growth, the guided-tissue regeneration plate consists of first and second integrated components including a first support plate component having a peripheral region and a generally open central portion and a fine mesh screen juxtaposed over the central portion and fixed to the peripheral region thereof In a functionally equivalent variant

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Guided tissue regeneration plate for use in a process for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Guided tissue regeneration plate for use in a process for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Guided tissue regeneration plate for use in a process for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2884391

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.