Bridges – Draw
Reexamination Certificate
2000-04-18
2003-03-25
Morano, S. Joseph (Department: 3617)
Bridges
Draw
C191S060500, C248S052000
Reexamination Certificate
active
06536063
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to a guide channel structure which can be fastened to a substructure, with a guide channel composed of long, parallel side elements, between which an object can be laid and moved.
BACKGROUND OF THE INVENTION
Guide channel structures of this kind are particularly used for laying and guiding energy transmission chains, which are used to accommodate flexible supply lines for electricity, gases, liquids and the like and lead these from a stationary source to a movable energy consumer. They are particularly used where the energy transmission chains have long travel paths, e.g. in materials handling, crane installations and other machines where an energy consumer travels long distances.
During the travel motion of the consumer, the energy transmission chains, which are flexible in at least one direction, are subjected to an unrolling and rerolling motion in the guide channels via a driving device located on the movable energy consumer. In this context, during the rerolling motion when travelling over long paths, the upper section of the energy transmission chain, known as the upper strand, moves in sliding fashion on the lower section, known as the lower strand, lying in the guide channel. If the fixed connecting element of the energy transmission chain is mounted in the middle of the travel path in the guide channel, the upper strand slides on the lower strand over one half of the travel path. In order to ensure low-friction running of the energy transmission chain, continuing at the same height over the other half of the travel path, the guide channels are provided with a sliding device in the corresponding area, this being located on the inner walls of the side elements, so that the upper strand can be moved on the sliding device.
Flexible energy pipes can also be guided on the sliding device instead of energy transmission chains.
Guide channel structures of the kind mentioned at the start are also suitable for laying and moving other objects subjected to sliding guidance with lateral restriction, e.g. sliding carriages, transported goods and transport containers.
Hitherto known guide channel structures are fastened to the substructure in stationary fashion. To this end, the guide channel is fixed on the substructure, e.g. a base plate, either directly or using mounting brackets (DE 297 06 670 U1).
However, there are fields of application for energy transmission chains and other objects permitting sliding movement where linear guidance in a channel is desirable, but where some sections of the channel and its substructure must permit opening and reclosing for certain purposes. This is necessary, for example, in the case of bridges on which an energy consumer can be moved and which must be opened to allow the passage of an object moving in the direction transverse to the bridge. Particularly in the case of harbour cranes with relatively long jibs, on which a crab travels back and forth and which must be swung up in order to allow the passage of a ship, it is desirable to guide the supply lines leading to the crab through an energy transmission chain sliding in a channel structure. In this case, the substructure consists of a stationary section and a pivotable section running along the jib.
SUMMARY OF THE INVENTION
The task of the present invention is to create a guide channel structure which is suitable for sections of the substructure which can be pivoted relative to one another.
According to the invention, this task is solved in that the guide channel structure consists of a stationary structural element for fastening on a stationary section of the substructure, a movable structural element for fastening on a section of the substructure which can be pivoted about a first axis of rotation in relation to the stationary section, and an intermediate structural element located between the stationary structural element and the movable structural element, which is connected to the movable structural element in a manner permitting pivoting about a second axis of rotation parallel to the first axis of rotation, where the stationary, movable and intermediate structural elements each display channel sections whose face ends lie flush against each other on the inner sides of the side elements when the substructure is not pivoted, the second axis of rotation for the intermediate structural element is located on the side of the guide channel pointing in the direction of pivoting and, depending on the position of the first axis of rotation for the pivotable section of the substructure, the opposite face ends of the channel sections of the movable structural element and of the intermediate structural element are located at an angle in the direction of pivoting and the pivoting motion of the intermediate structural element is coupled to the movement of the pivotable section of the substructure and of the movable structural element by means of a control device in such a way that, when pivoting this section of the substructure, the movable structural element and the intermediate structural element move past each other.
The control device preferably displays a mechanical coupling. This makes it possible to achieve particularly simple coupling of the intermediate structural element to the movement of the pivotable section of the substructure or of the movable structural element, without requiring a separate drive for the pivoting movement of the intermediate structural element. There is no need for a more extensive control device.
However, other types of coupling are also open to consideration where, for example, the intermediate structural element is driven electrically or hydraulically as a simultaneous function of the movement or the drive of the pivotable section of the substructure. This solution includes control devices suitable for this purpose.
In a customary application, e.g. in crane installations, the first axis of rotation for the pivotable section of the substructure (e.g. the jib) and the second axis of rotation for the intermediate structural element are positioned horizontal to the substructure. The pivotable section of the substructure (jib) is then pivoted vertically. If upward pivoting takes place, the second axis of rotation is located on the upper side of the guide channel or above it; in the case of downward pivoting, the second axis of rotation must be provided on the underside of the guide channel or below it. In addition, lateral pivoting of the substructure and the guide channel is open to consideration, in which case the second axis of rotation is located on one of the two sides of the guide channel or outside the guide channel.
If a mechanical coupling is used, it preferably displays a lever arm located on the intermediate structural element and a thrust element which is articulated to the movable structural element and acts on the lever arm in articulated fashion. When the substructure is pivoted, the movable structural element attached to it acts via the thrust element and the lever arm, exerting a torque on the intermediate structural element in the corresponding direction. Depending on the location of the first axis of rotation in relation to the guide channel structure, the geometry of the intermediate structural element must be dimensioned, and the opposite face ends of the channel sections of the movable structural element and the intermediate structural element arranged at an angle in the longitudinal direction, in such a way that the movable structural element and the intermediate structural element move over one another when the substructure is pivoted.
In an advantageous configuration of the mechanical coupling, the lever arm is located in the region of the end of the intermediate structural element opposite the movable structural element and essentially extends vertically upwards from this point, where the thrust element extends from a pivot point located on or above the upper side of the movable structural element to a pivot point located at the free end of the lever arm and runs laterally outside the intermediate
Drinker Biddle & Reath LLP
Igus Spritzgussteile für die Industrie GmbH
Jules Frantz F.
Morano S. Joseph
LandOfFree
Guide channel structure does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Guide channel structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Guide channel structure will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3046555