Guanidinium functionalized nucleotides and precursors thereof

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S026800, C536S027600, C536S027810, C536S028500, C536S028530

Reexamination Certificate

active

06593466

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to monomers and oligomers containing guanidinium moieties and methods of preparing such oligomers. The oligomers of the present invention are used for investigative and therapeutic purposes.
BACKGROUND OF THE INVENTION
It is well known that most of the bodily states in mammals, including most disease states, are affected by proteins. Classical therapeutic modes have generally focused on interactions with such proteins in an effort to moderate their disease-causing or disease-potentiating functions. However, recently, attempts have been made to moderate the actual production of such proteins by interactions with molecules that direct their synthesis, such as intracellular RNA. By interfering with the production of proteins, maximum therapeutic effect and minimal side effects may be realized. It is the general object of such therapeutic approaches to interfere with or otherwise modulate gene expression leading to undesired protein formation.
One method for inhibiting specific gene expression is the use of oligonucleotides. Oligonucleotides are now accepted as therapeutic agents with great promise. Oligonucleotides are known to hybridize to single-stranded DNA or RNA molecules. Hybridization is the sequence-specific base pair hydrogen bonding of nucleobases of the oligonucleotide to the nucleobases of the target DNA or RNA molecule. Such nucleobase pairs are said to be complementary to one another. The concept of inhibiting gene expression through the use of sequence-specific binding of oligonucleotides to target RNA sequences, also known as antisense inhibition, has been demonstrated in a variety of systems, including living cells (for example see: Wagner et al., Science (1993) 260: 1510-1513; Milligan et al.,
J. Med. Chem
., (1993) 36:1923-37; Uhlmann et al.,
Chem. Reviews
, (1990) 90:543-584; Stein et al.,
Cancer Res
., (1988) 48:2659-2668).
The events that provide the disruption of the nucleic acid function by antisense oligonucleotides (Cohen in
Oligonucleotides: Antisense Inhibitors of Gene Expression
, (1989) CRC Press, Inc., Boca Raton, Fla.) are thought to be of two types. The first, hybridization arrest, denotes the terminating event in which the oligonucleotide inhibitor binds to the target nucleic acid and thus prevents, by simple steric hindrance, the binding of essential proteins, most often ribosomes, to the nucleic acid. Methyl phosphonate oligonucleotides: Miller and Ts'O,
Anti
-
Cancer Drug Design
, 1987, 2:117-128, and &agr;-anomer oligonucleotides are the two most extensively studied antisense agents which are thought to disrupt nucleic acid function by hybridization arrest.
The second type of terminating event for antisense oligonucleotides involves the enzymatic cleavage of the targeted RNA by intracellular RNase H. A 2′-deoxyribofuranosyl oligonucleotide or oligonucleotide analog hybridizes with the targeted RNA and this duplex activates the RNase H enzyme to cleave the RNA strand, thus destroying the normal function of the RNA. Phosphorothioate oligonucleotides are the most prominent example of an antisense agent that operates by this type of antisense terminating event.
Oligonucleotides may also bind to duplex nucleic acids to form triplex complexes in a sequence specific manner via Hoogsteen base pairing (Beal et al.,
Science
, (1991) 251:1360-1363; Young et al.,
Proc. Natl. Acad. Sci
. (1991) 88:10023-10026). Both antisense and triple helix therapeutic strategies are directed towards nucleic acid sequences that are involved in or responsible for establishing or maintaining disease conditions. Such target nucleic acid sequences may be found in the genomes of pathogenic organisms including bacteria, yeasts, fungi, protozoa, parasites, viruses, or may be endogenous in nature. By hybridizing to and modifying the expression of a gene important for the establishment, maintenance or elimination of a disease condition, the corresponding condition may be cured, prevented or ameliorated.
In determining the extent of hybridization of an oligonucleotide to a complementary nucleic acid, the relative ability of an oligonucleotide to bind to the complementary nucleic acid may be compared by determining the melting temperature of a particular hybridization complex. The melting temperature (T
m
), a characteristic physical property of double helices, denotes the temperature (in degrees centigrade) at which 50% helical (hybridized) versus coil (unhybridized) forms are present. T
m
is measured by using the UV spectrum to determine the formation and breakdown (melting) of the hybridization complex. Base stacking, which occurs during hybridization, is accompanied by a reduction in UV absorption (hypochromicity). Consequently, a reduction in UV absorption indicates a higher T
m
. The higher the T
m
, the greater the strength of the bonds between the strands.
Oligonucleotides may also be of therapeutic value when they bind to non-nucleic acid biomolecules such as intracellular or extracellular polypeptides, proteins, or enzymes. Such oligonucleotides are often referred to as ‘aptamers’ and they typically bind to and interfere with the function of protein targets (Griffin et al.,
Blood
, (1993), 81:3271-3276; Bock et al.,
Nature
, (1992) 355: 564-566).
Oligonucleotides and their analogs have been developed and used for diagnostic purposes, therapeutic applications and as research reagents. For use as therapeutics, oligonucleotides must be transported across cell membranes or be taken up by cells, and appropriately hybridize to target DNA or RNA. These critical functions depend on the initial stability of the oligonucleotides toward nuclease degradation. A serious deficiency of unmodified oligonucleotides which affects their hybridization potential with target DNA or RNA for therapeutic purposes is the enzymatic degradation of administered oligonucleotides by a variety of intracellular and extracellular ubiquitous nucleolytic enzymes referred to as nucleases. For oligonucleotides to be useful as therapeutics or diagnostics, the oligonucleotides should demonstrate enhanced binding affinity to complementary target nucleic acids, and preferably be reasonably stable to nucleases and resist degradation. For a non-cellular use such as a research reagent, oligonucleotides need not necessarily possess nuclease stability.
A number of chemical modifications have been introduced into oligonucleotides to increase their binding affinity to target DNA or RNA and resist nuclease degradation.
Modifications have been made to the ribose phosphate backbone to increase the resistance to nucleases. These modifications include use of linkages such as methyl phosphonates, phosphorothioates and phosphorodithioates, and the use of modified sugar moieties such as 2′-O-alkyl ribose. Other oligonucleotide modifications include those made to modulate uptake and cellular distribution. A number of modifications that dramatically alter the nature of the internucleotide linkage have also been reported in the literature. These include non-phosphorus linkages, peptide nucleic acids (PNA's) and 2′-5′ linkages. Another modification to oligonucleotides, usually for diagnostic and research applications, is labeling with non-isotopic labels, e.g., fluorescein, biotin, digoxigenin, alkaline phosphatase, or other reporter molecules.
A variety of modified phosphorus-containing linkages have been studied as replacements for the natural, readily cleaved phosphodiester linkage in oligonucleotides. In general, most of them, such as the phosphorothioate, phosphoramidates, phosphonates and phosphorodithioates all result in oligonucleotides with reduced binding to complementary targets and decreased hybrid stability. In order to make effective therapeutics therefore this binding and hybrid stability of antisense oligonucleotides needs to be improved.
Of the large number of modifications made and studied, few have progressed far enough through discovery and development to deserve clinical evaluation. Reasons underlying this include

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Guanidinium functionalized nucleotides and precursors thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Guanidinium functionalized nucleotides and precursors thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Guanidinium functionalized nucleotides and precursors thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3081359

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.