Growth stimulation of biological cells and tissue by...

Chemistry: molecular biology and microbiology – Apparatus – Bioreactor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S299100

Reexamination Certificate

active

06673597

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the fields of biophysics, tissue regeneration, tissue culture, and neurobiology. More specifically, the present invention relates to the use of an electromagnetic field, and preferably, a time varying electromagnetic field, for potentiation of or controlling the growth of biological cells and tissue, such as mammalian tissue. More specifically, the present invention relates to the use of an electromagnetic field for controlling the growth of neural cells and tissues. The preferred embodiment utilizes two-dimensional conducting plate electrodes and may be applied to conventional, two dimensional tissue cultures or to three-dimensional cultures. Three dimensional cultures may be achieved in actual microgravity or by rotating wall vessel technology which simulates the physical conditions of microgravity, and in other, conventional three-dimensional matrix based cultures. The electromagnetic field, preferably a time varying electromagnetic field, is achieved in the vicinity of the electrode by passing, through the electrode, a time varying current.
2. Description of the Related Art
Growth of a variety of both normal and neoplastic mammalian tissues in both mono-culture and co-culture has been established in both batch-fed and perfused rotating wall vessels (1-2), and in conventional plate or flask based culture systems. In some applications, growth of three-dimensional structure, e.g., tissues, in these culture systems has been facilitated by support of a solid matrix in the form of biocompatible polymers and microcarriers. In the case of spheroidal growth, three-dimensional structure has been achieved without matrix support (3-6). NASA rotating wall tissue culture technologies have extended this three dimensional capacity for a number of tissues and has allowed the tissue to express different genes and biomolecules. Neuronal tissue has been largely refractory, in terms of controlled growth induction and three dimensional organization, under conventional culture conditions. Actual microgravity, and to a lesser extent, rotationally simulated microgravity, have permitted some enhanced nerve growth (Lelkes et al). Attempts to electrically stimulate growth have utilized static electric fields, static magnetic fields, and the direct passage of current through the culture medium, though not the induction of a time varying electromagnetic field in the culture region.
Neuronal tissue comprises elongated nerve cells composed of elongated axons, dendrites, and nuclear areas. Axons and dendrites are chiefly responsible for transmission of neural signals over distance and longitudinal cell orientation is critical for proper tissue formation and function. The nucleus plays the typical role of directing nucleic acid synthesis for the control of cellular metabolic function, including growth. In vivo, the neuronal tissue is invariably spatially associated with a system of feeder, or glial, cells. This three dimensional spatial arrangement has not been reproduced by conventional in vitro culture. Investigators, Borgens R B et al, and others, have utilized static electric fields in an attempt to enhance nerve growth in culture. (Valentini et al) with some success to either alter embryonic development or achieve isolated nerve axon directional growth. However, actual potentiation of growth or genetic activity causing such, have not been achieved. Mechanical devices intended to help grow and orient three dimensional mammalian neuronal tissue are currently available. Fukuda et al. (7) used zones formed between stainless steel shaving blades to orient neuronal cells or axons. Additionally, electrodes charged with electrical potential were employed to enhance axon response. Aebischer (8) described an electrically-charged, implantable tubular membrane for use in regenerating severed nerves within the human body. However, none of these devices utilize channels of cell-attractive material, neither do they apply a time varying electromagnetic field, or a static electrical or magnetic field. Additionally, no use is made of simulated or actual microgravity techniques for pure neuronal, or mixed, neuronal and feeder cell cultures. The prior art is deficient in its lack of effective means for growing three dimensional mammalian neuronal tissue in the proximity of, or directly upon the surface, of a current carrying electrode (which may be bioattractive and directly adherent to the cells). Furthermore, the use of a time varying current to induce a corresponding time varying electromagnetic field, in the vicinity of the growing culture, to potentiate or spatially direct cell growth is not part of the prior art.
SUMMARY OF THE INVENTION
The present invention relates to a system and method for culturing biological cells, such as mammalian cells, within a culture medium. The cells are exposed to an electromagnetic field, which, in the preferred embodiment, is a time-varying electromagnetic field. In the preferred embodiment, this field is generated by a conductive electrode, adjacently spaced from the incubating cells, carrying a time varying electrical current. The electrode, in one case, is in direct galvanic contact with the culture media and cells, and in another case, it is placed external to the culture apparatus in a galvanically isolated condition. Preferably, a 10 hertz square wave of 1-6 milliamperes, and with nearly zero time average, is passed through the electrode, suitably from corner to opposite corner of a square metallic conductive plate. The cells, such as neurons in this case, were, in one embodiment, grown directly on the electrode surface, composed of a biocompatable material. In another embodiment, the cells were grown within a container under the influence of a time varying electromagnetic field from an electrode external of and adjacent to the container, galvanically isolated from the media and culture within the container.
The growing cells may actually be attracted and trophically supported by more supportive electrode material or coatings. Furthermore, channels may be incorporated in the culture vessel and lined with growth substrate which may be electrically conductive. In one embodiment, a time varying electromagnetic field is induced in the region of the channel by passing the time varying current through a conductor placed along the channel. This arrangement will further direct growth by the combined effect of the field and trophic materials.
In the preferred embodiment, the presence of the time varying electromagnetic field potentiates the growth of nerve and other tissue. The time varying field may be induced by either: 1) a time varying current within a conductor, or 2) a time varying voltage between fixed conductors. In one embodiment, for example, the culture is placed nearby a conductor through which a time varying current is passed, or between parallel plates upon which a time varying voltage is applied. In both cases, a time varying electromagnetic field results within the area of interest, i.e., in the region of the cell culture.
The system and process are utilized in combination with known tissue culture processes to produce enhanced cell growth, directed cell growth, and tissue formation and organization.
As will be understood from the description to follow, the system is operable to up or down regulate the activity of specific genes. In general, growth promoting genes are up regulated and growth inhibitory genes are down regulated. The effect is shown to persist for some period after termination of the applied time varying field. This persistent, growth promoting effect subsides after a period of some days, and the cells return to a growth state characterized by controls, having never been exposed to the fields. This is beneficial in certain applications, in that medical applications for clinical medical care, i.e. nerve regeneration, are therefore safer than if the “pseudo transformed” state persisted. The set of gene transformations, associated with the time varying electroma

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Growth stimulation of biological cells and tissue by... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Growth stimulation of biological cells and tissue by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Growth stimulation of biological cells and tissue by... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3189053

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.