Growth differentiation factor-8 nucleic acid and...

Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of... – Bacteria or actinomycetales; media therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C435S320100, C435S254110, C435S069400, C536S023400

Reexamination Certificate

active

06465239

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to growth differentiation factor-8 (GDF-8) and specifically to nucleic acid sequences encoding GDF-8 polypeptide from a variety of aquatic organisms, as well as transgenic aquatic organisms having a disrupted. GDF-8 gene and methods of making the same.
2. Description of Related Art
The transforming growth factor (TGF-&bgr;) superfamily encompasses a group of structurally-related proteins which affect a wide range of differentiation processes during embryonic development. The family includes, Mullerian inhibiting substance (MIS), which is required for normal male sex development (Behringer, et al., Nature, 345:167, 1990), Drosophila decapentaplegic (DPP) gene product, which is required for dorsal-ventral axis formation and morphogenesis of the imaginal disks (Padgett, et al., Nature, 325:81-84, 1987), the Xenopus Vg-1 gene product, which localizes to the vegetal pole of eggs ((Weeks, et al., Cell, 51:861-867, 1987), the activins (Mason, et al., Biochem, Biophys. Res. Commun., 135:957-964, 1986), which can induce the formation of mesoderm and anterior structures in Xenopus embryos (Thomsen, et al., Cell, 63:485, 1990), and the bone morphogenetic proteins (BMPs, osteogenin, OP-1) which can induce de novo cartilage and bone formation (Sampath, et al., J. Biol. Chem., 265:13198, 1990). The TGF-&bgr; can influence a variety of differentiation processes, including adipogenesis, myogenesis, chondrogenesis, hematopolesis, and epithelial cell differentiation (for review, see Massague, Cell 49:437, 1987).
The proteins of the TGF-&bgr; family are initially synthesized as a large precursor protein which subsequently undergoes proteolytic cleavage at a cluster of basic residues approximately 110-140 amino acids from the C-terminus. The C-terminal regions, or mature regions, of the proteins are all structurally related and the different family members can be classified into distinct subgroups based on the extent of their homology. Although the homologies within particular subgroups range from 70% to 90% amino acid sequence identity, the homologies between subgroups are significantly lower, generally ranging from only 20% to 50%. In each case, the active species appears to be a disulfide-linked dimer of C-terminal fragments. Studies have shown that when the pro-region of a member of the TGF-&bgr; family is coexpressed with a mature region of another member of the TGF-family, intracellular dimerization and secretion of biologically active homodimers occur (Gray, A. et al., Science, 247:1328, 1990). Additional studies by Hammonds, et al., (Molec. Endocrin. 5:149, 1991) showed that the use of the BMP-2 pro-region combined with the BMP-4 mature region led to dramatically improved expression of mature BMP-4. For most of the family members that have been studied, the homodimeric species has been found to be biologically active, but for other family members, like the inhibins (Ling, et al., Nature, 321:779, 1986) and the TGF-&bgr;s (Cheifetz, et al., Cell, 48:409, 1987), heterodimers have also been detected, and these appear to have different biological properties than the respective homodimers.
In addition it is desirable to produce livestock and game animals, such as cows, sheep, pigs, chicken and turkey, fish which are relatively high in musculature and protein, and low in fat content. Many drug and diet regimens exist which may help increase muscle and protein content and lower undesirably high fat and/or cholesterol levels, but such treatment is generally administered after the fact, and is begun only after significant damage has occurred to the vasculature. Accordingly, it would be desirable to produce animals which are genetically predisposed to having higher muscle content, without any ancillary increase in fat levels.
The food industry has put much effort into increasing the amount of muscle and protein in foodstuffs. This quest is relatively simple in the manufacture of synthetic foodstuffs, but has been met with limited success in the preparation of animal foodstuffs. Attempts have been made, for example, to lower cholesterol levels in beef and poultry products by including cholesterol-lowering drugs in animal feed (see e.g. Elkin and Rogler, J. Agric. Food Chem. 1990, 38, 1635-1641). However, there remains a need for more effective methods of increasing muscle and reducing fat and cholesterol levels in animal food products.
The U.S. market for seafood is large and growing with per capita seafood consumption rising 23% in the last decade. During this period, the consumer price index for seafood jumped 244%, while red meat prices rose only half that amount. Despite efforts to manage wild finfish and shellfish populations at a sustained yield level, the U.S. consumes increasingly greater amounts than it produces from its fishers, thus depleting the resource. Ocean harvests worldwide are expected to meet only 90 million metric tons of the projected demand of 114 million metric tons in the year 2000 (Harvey, 1990).
Gene transfer technique has become a new and powerful approach to manipulate the genetic and phenotypic characteristic of both animals and plants. Various reports have been made in the production of transgenic fish and other aquatic organisms. The first transgenic study on fish was reported by Vielkind et al. (1982). These investigators injected swordtail tumor genes into the Platyfish, and found that the injected swordtail Tu genes could induce T-melanophore induction in Tu-free Platyfish. In 1985 and 1986, Zhu et al. reported the production of transgenic fish by growth hormone gene transfer. Using a aquatic animal metallothionein promoter ligated to a human GH structural gene, they successfully produced transgenic loach, goldfish and silver carp. On the average, the transgenic fish was 1 to 3 times larger than control. Since then, several reports using similar gene constructs have been published (Rokkones et al. 1989, Guyomarde et al. 1989, Chen et al. 1990).
SUMMARY OF THE INVENTION
The present invention provides a cell growth and differentiation factor, GDF-8, a polynucleotide sequence which encodes the factor, and antibodies which are immunoreactive with the factor. This factor appears to relate to various cell proliferative disorders, especially those involving muscle, nerve, and adipose tissue.
In another embodiment, the subject invention provides non-human transgenic animals which are useful as a source of food products with high muscle and protein content, and reduced fat and cholesterol content. The animals have been altered chromosomally in their germ cells and somatic cells so that the production of GDF-8 is produced in reduced amounts, or is completely disrupted, resulting in animals with decreased levels of GDF-8 in their system and higher than normal levels of muscle tissue, preferably without increased fat and/or cholesterol levels. Accordingly, the present invention also includes food products provided by the animals. Such food products have increased nutritional value because of the increase in muscle tissue. The transgenic non-human animals of the invention include bovine, porcine, piscine, ovine and avian animals, for example. More particularly, the transgenic non-human animals include aquatic organisms, such as finfish, shrimp, lobster, crab, squid, oysters and abalone, for example.
In one embodiment, introduction of the DNA is accomplished by electroporating a nucleic acid sequence encoding the transgene of interest into a fertilized aquatic organism egg, for example, a fertilized abalone or finfish egg. Typically, the DNA sequence is flanked by regulatory sequences which are effective to allow expression of the DNA sequence in the transgenic organism.
The subject invention also provides a method of producing animal food products having increased muscle content. The method includes modifying the genetic makeup of the germ cells of a pronuclear embryo of the animal, implanting the embryo into the oviduct of a pseudopregnant female thereby allowing the embryo to mature to full

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Growth differentiation factor-8 nucleic acid and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Growth differentiation factor-8 nucleic acid and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Growth differentiation factor-8 nucleic acid and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2928173

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.