Grout float assembly

Brushing – scrubbing – and general cleaning – Implements – Mason's trowel or float

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C015S235600, C015S245100, C015S143100, C425S087000, C425S458000, C081S489000, C029S453000, C029S458000, C029S460000

Reexamination Certificate

active

06604256

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The subject invention relates to grout floats and more particularly to constructions for grout floats. Still more particularly, it is concerned with methods and means for mounting a handle to a grout float blade whereby the handle or the entire float can be overmolded with a resilient layer of elastomeric material.
2. Prior Art
Grout floats are used in the spreading and removal of excess water from grout prior to the application of tiles to walls, floors and other surfaces. Grout floats are well known in the art and generally take the form of a flat rectangular blade member of metal, plastic or composite material with a handle mounted to its upper surface. The smooth bottom of the tool may be the exposed underside of the blade, a layer of suitable material applied or affixed to the blade, or a laminate formed, for example, of resilient layers of plastic, composite, rubber, sponge, or other well known materials, bonded to the blade.
The early prior art grout float handles were of wood or other convenient material. Cantilevered on a single metal shank, or provided with metal mounting flanges at their ends, these handles were conventionally mounted to the float blade by welding or riveting. Typically, the blades of these tools were susceptible to bending under downward or lateral force. Repeated flexing quickly led to fracturing of the weld or loosening of the rivets and eventual separation of the handle from the blade. Employing heavy construction to minimize or eliminate the problem of flexion increased the weight and production cost of the tool.
Additionally, tools made of exposed metal or employing unprotected metal mounting components were especially susceptible to wear and resulting damage through abrasion or corrosion. Attempts were made to reduce the float's exposure or susceptibility to wear and deterioration by employing assemblies with interlocking components. Few of these were successful, and those generally required multi-step manufacturing operations that proved to be prohibitively expensive.
Present grout floats often use injection moldable plastics, such as glass-filled nylons or polyolefins for the handle. However, when hollow molded plastic handles are used, watertight seals must be maintained around the joints in the component plastic parts. In use, the tool is repeatedly subjected to immersion in highly abrasive slurries and submerged in water for cleaning. If liquid leaks into the handle's hollow cavities, the life of the tool and the weight advantage of a hollow structure are reduced significantly. To achieve the tolerances necessary for proper handle assembly with watertight seals, the manufacturing processes become complex and expensive.
Fabricated handles incorporating combinations of the foregoing constructions for hand tools are well known. Typically, U.S. Pat. No. 5,615,445 by C. Kelsay and A. Ness shows a handle assembly having a protruding ridge on one section that is received by a recessed grove on the opposite section. This groove and ridge combination improves the fit between the two core sections and promotes a watertight seal. The '445 patent illustrates the use of posts and tubes for guiding the member sections into proper alignment; however, it relies on means, such as screws to lock the handle sections together. When these become loose through normal use, the integrity of the entire assembly is compromised.
With extended use, handles of wood, metal, or rigid synthetic materials tend to become uncomfortable to the user's hand, arm and shoulder. Over time, contact of the skin with the grout-covered unyielding handle surface causes painful abrasions, blisters, and eventually, open wounds. It is now common practice to provide tool handles with a soft outer layer for comfort and protection. Typically, the tool handle is formed with a hard core made up of one or more components. In manufacture, the core is rigidly attached to the blade and then placed in a mold and overmolded with a resilient coating, usually of a thermoplastic elastomer. In some instances, both the handle core and the blade are overmolded so as to provide the tool with a unitary resilient outer layer.
Such handle cores can be attached to their blades by a variety of methods. In the 4,724,572 patent, by way of example, the blade is provided with an opening in which the handle is retained by tangs. This requires a special cooperative structure between the handle and blade with material and shaping limitations and the prospect of ultimate loosening resulting from wear and bending of the tangs. In most cases, once the core elements begin to separate or the handle and blade become loose, the overmolding prevents the tool from being repaired.
No known prior art grout float provides a method and cooperative means for both forming a handle core suitable for overmolding and securing the handle to the blade, much less for doing so in a single action. The subject invention serves all of those functions.
SUMMARY OF THE INVENTION
As will be demonstrated, the novel construction of the invention allows the handle core and blade components to be assembled and permanently securely joined in a single motion without the use of welds, rivets, screws or adhesives. The ease of the process and the elimination of need for any additional labor, tools or hardware to complete the assembly of the handle core and the blade provide clear advantages over prior grout float constructions.
The present invention affords significant practical advantages and ergonomic improvements over the art by providing a lightweight handle core rigidly mounted to a blade that can be fully or partially overmolded for the user's comfort and to prevent the penetration of water into the core interior.
It is an object of the invention to provide a construction whereby the two component core sections defining the handle core are securely locked together and the core is permanently rigidly attached to the blade in a single self-locking motion. The locking of the handle core sections is achieved by means of interlocking detents, preferably mating pairs of bosses and receptacles, associated with the handle core sections. Securing of the handle core to the blade is accomplished by the interaction of connectors, preferably a pair of tongues formed on the handle core sections, and one or more retainers, preferably one or more flanges, formed on the blade.
In its preferred form, the grout float assembly includes a blade having an upper surface. An upstanding flange is provided on the upper surface. The flange has an opening adapted for receiving and frictionally interlocking with a pair of tongues. The handle core is made in two sections that are adapted to be assembled into a single unit. The ends of the unit are configured to abut and conform closely with the upper surface of the blade.
The core sections are provided with confronting, interlocking bosses and receptacles. The bosses and receptacles are axially aligned and tapered. Cooperating detents such as annular rings on the bosses and annular grooves in the receptacles interlock securely when the bosses and receptacles are mutually engaged and the handle core sections are forced together. The core sections also have confronting tongues positioned to pass through and frictionally engage the opening in the blade flange and thereby secure the handle to the blade when the boss and receptacle are interlocked.
The tapered tongues produce a wedging action when inserted through the flange openings whereby the locking union of the complete assembly is enhanced and strengthened. The wedging action includes two wedging forces. The first of these is produced when the tapered tongue on each core section slides frictionally against the upper and lower edge of the flange opening. The effect of this action is to draw the ends of the handle core into close, rigid contact with the upper surface of the blade. The second results when the tapered faces of the opposing tongues frictionally engaged each other as the core sections

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Grout float assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Grout float assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Grout float assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3079137

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.