Grooved construction beam

Static structures (e.g. – buildings) – Wall – ceiling – floor – or roof designed for ventilation or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S302300, C052S309130, C052S480000, C052S481100, C052S745190

Reexamination Certificate

active

06594964

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of construction material and is particularly concerned with a grooved construction beam.
BACKGROUND OF THE INVENTION
Beams made of material such as wood are conventionally used in the construction of building frames. The beams are used for a variety of purposes such as for acting as studs, joists, braces, posts and the like. Although efficiently serving their intended purpose, the prior art beams nevertheless suffer from a set of drawbacks.
For example, being made of an integral piece of material with flat abutment surfaces, prior art beams have a tendency to transmit vibration and, hence, to transmit noises from one room to the other. Typically, the vibrations imparted on a floor joist in a room located in a first end of the building are directly transmitted to a room located at the opposite end of the building through the continuous and flat abutment surfaces of the prior art beams. The vibration is, in turn, converted into noise by adjacent vibrating components.
Another drawback associated with conventional beams used in the construction of building frames is that their flat abutment surfaces do not allow for ventilation between the beam and adjacent abutting structures. For example, both the surface of the floor joist in abutting contact with the corresponding sub-floor and the surface of the wall stud in abutting contact with the sheathing simply do not allow for air circulation and, hence, the overall heat transfer characteristics of the building may suffer. Furthermore, accumulation of trapped humidity may lead to rotting or other types of deterioration of the frame structure over an extended period of time.
The problems associated with prior art construction beams has been recognized in the prior art. For example, U.S. Pat. No. 3,605,360 discloses a pre-stressed vertically laminated beam of wood, which beam comprises inner metal laminated members and outer wood laminated members. These metal and wooden members are fastened together by nails, screws and the like. The document also discloses a complicated manner by which to secure the components of the composite beam, which beam may consist of relatively heavy material. The composite material may prove to be efficient against transmission of vibration but it inherently increases manufacturing costs and renders the overall structure relatively heavy.
Accordingly, there exists a need for an improved beam specifically well adapted for use in building frames. Hence, it is an object of the present invention to provide an improved beam structure.
Advantages of the present invention include that the proposed grooved construction beam reduces the transmission of vibrations and of noise to adjacent structures.
Also, the proposed construction beam allows for venting between the beam and abutting structure to which it is attached. The proposed beam thus reduces the risks of moisture accumulation with consequent potential rotting of the building frame.
Furthermore, by providing pockets of air between the beam and the structure to which it is attached, the proposed beam improves the overall thermal insulation characteristics of the building frame.
Still further, the proposed construction beam is adapted to conform to conventional forms of manufacturing, so as to be of simple construction and easy to use, thus providing a construction beam that will be economically feasible, long lasting and relatively trouble free in operation.
The present invention also relates to a method of manufacturing a beam in accordance with the invention through a set of easy, efficient and relatively inexpensive steps so as to allow manufacturing of the proposed beam at low costs.
In accordance with the present invention, there is provided a construction beam for use adjacent a frame abutment surface, the construction beam comprising: a generally elongated body defining a beam longitudinal axis, a pair of longitudinally opposed beam end surfaces, a pair of transversally opposed beam lateral surfaces and a pair of opposed beam abutment surfaces; at least one groove extending substantially transversally across at least one of the beam abutment surfaces; the at least one groove defining a groove base segment, the at least one groove being configured, sized and positioned so that when the beam abutment surface containing the at least one groove is abuttingly positioned against the frame abutment surface, the at least one groove with the frame abutment surface together delimit a channel; whereby the channel is adapted to be filled with a gas, allowing the gas contained within the channel to act as a thermal insulation and vibration-damping component.
Preferably, the at least one groove extends at an angle relative to the beam longitudinal axis. Conveniently, the at least one groove defines a groove with and a groove depth, the at least one groove having a groove depth to groove width ration substantially in the range of ⅙. Preferably, each groove defines a corresponding groove width between the peripheral edges of adjacent intermediate segments and each intermediate segment defines an intermediate segment width between the peripheral edges of adjacent grooves; the ratio of groove width to intermediate segment width defining a value substantially in the range of 0.6.
In accordance with one embodiment of the invention, the intermediate segment is made of a first material and the rest of the construction beam is made of a second and different material. Conveniently, the first material has inherent vibration damping properties. Preferably, the first material is an elastomeric resin.
In accordance with one embodiment of the invention, the construction beam is provided with a plurality of beam grooves extending substantially transversally across at least one of the beam abutment surfaces, the beam also defining a set of intermediate segments between adjacent beam grooves the intermediate segments extending from a level substantially in register with the groove base segments to a position substantially in register with the at least one beam abutment surface.
In accordance with another embodiment of the invention, the construction beam is provided with a plurality of beam grooves extending substantially transversally across both beam abutment surfaces, the beam also defining a set of intermediate segments between adjacent beam grooves the intermediate segments extending from a level substantially in register with the groove base segments to a position substantially in register with a corresponding beam abutment surface.
In accordance with one embodiment of the invention, the beam grooves are joined in a substantially continuous end-to-end relationship relative to each other so as to form a substantially helicoidally-shaped groove winding substantially continuously across the beam lateral and abutment surfaces, the intermediate segments being joined in a substantially continuous end-to-end relationship relative to each other so as to form a substantially helicoidally-shaped intermediate segment winding substantially continuously across the beam lateral and abutment surfaces.
In accordance with the present invention, there is also provided in combination with a construction panel defining a frame abutment surface, a construction beam attached to the construction panel for linking the construction panel to another frame component, the construction beam comprising: a generally elongated body defining a beam longitudinal axis, a pair of longitudinally opposed beam end surfaces, a pair of transversally opposed beam lateral surfaces and a pair of opposed beam abutment surfaces; at least one groove extending substantially transversally across at least one of the beam abutment surfaces; the at least one groove defining a groove base segment, the at least one groove being configured, sized and positioned so that when the beam abutment surface containing the at least one groove is abuttingly positioned against the frame abutment surface, the at least one groove with the frame abutment surface together delimi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Grooved construction beam does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Grooved construction beam, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Grooved construction beam will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3078007

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.