Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent combined with surgical delivery system
Reexamination Certificate
2000-12-28
2002-10-22
Willse, David H. (Department: 3731)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Arterial prosthesis
Stent combined with surgical delivery system
C606S198000, C606S194000
Reexamination Certificate
active
06468298
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to the field of delivery systems and methods for deploying intravascular stents, and more specifically, to delivery systems that incorporate mechanical gripping devices for maintaining self-expanding stents in a compressed state during delivery to facilitate accurate deployment of the stent within the body vessel.
Cardiovascular disease currently takes the lives of almost one million Americans each year. Diseases of the vascular system may occur as a result of several etiologies that lead to the development of atherosclerosis, a disease of the arteries characterized by thickening, loss of elasticity, and calcification of arterial walls, which manifests itself in two predominant forms. In one form, a narrowing of blood vessels impedes blood flow through the vessel lumen. In another form, arterial walls degenerate due to the formation of aneurisms, which cause the walls of the affected artery to weaken and balloon outward while thinning. Although many patients with vascular disease choose to explore treatments that do not require surgery, such as cholesterol reducing regimens or drugs, beta blockers to regulate and reduce blood pressure, and blood-thinning agents, vascular surgery still remains an often performed procedure. In the United States alone, more than 850,000 angioplasties and bypasses are currently performed annually at a cost of around $30 billion.
As a less invasive alternative to bypass surgery, atherectomy has become a widely accepted procedure because it removes built up plaque from the inside of blood vessels that have experienced the progressive occlusive effects of atheroscierosois. Atherectomy is exercised most commonly in major arterial vessels, such as the coronary arteries, and can be accomplished by various means, including lasers, incisions, drill tip catheters. Angioplasty is another non-invasive procedure where a balloon-tipped catheter or other device is used to enlarge a narrowing in a artery. This enlargement is accomplished by radially compressing the atherosclerotic plaque of a stenosis against the inside of the artery wall, and dilating the lumen of the artery.
Although angioplasty procedures are widely accepted for treatment of occluded arteries, the problem of restenosis following an angioplasty treatment is a significant danger that a patient must face. Restenosis is the closure of an artery following trauma caused by attempts to open an occluded portion of the artery, and is frequently caused by the elastic rebound of the arterial wall and/or by dissections in the vessel wall caused by the angioplasty procedure. To combat restenosis, vascular surgeons implant tubular supports known as “stents” into surgically repaired vessels.
Stents are used to support dissections in vessel walls and to prevent the elastic rebound of repaired vessels, thereby reducing the level of restenosis for many patients. The stent is typically inserted by catheter into a vascular lumen at an easily accessible location, such as the brachial or femoral arteries, and then is advanced through the vasculature to the deployment site. The stent is initially maintained in a radially compressed or collapsed state to enable it to be maneuvered through the body lumen. Once in position, the stent is expanded into contact with the diseased portion of the arterial wall, thereby providing internal support for the lumen. One method for expanding the stent at the site of the stenosis employs some active external means to apply a controlled force that expands the stent, such as a balloon in typical balloon angioplasty catheter. Details of prior art expandable stents and their representative associated delivery systems can be found in U.S. Pat. No. 3,868,956 (Alfidi et al.); U.S. Pat. No. 4,512,1338 (Balko et al.); U.S. Pat. No. 4,553,545 (Maass, et al.); U.S. Pat. No. 4,733,665 (Palmaz); U.S. Pat. No. 4,762,128 (Rosenbluth); U.S. Pat. No. 4,800,882 (Gianturco); U.S. Pat. No. 4,886,062 (Wiktor); U.S. Pat. No. 5,514,154 (Lau, et al.); U.S. Pat. No. 5,421,955 (Lau et al.); U.S. Pat. No. 5,603,721 (Lau et al.); U.S. Pat. No. 4,655,772 (Wallsten); U.S. Pat. No. 4,739,762 (Palmaz); U.S. Pat. No. 5,569,295 (Lam); U.S. Pat. No. 5,899,935 (Ding); U.S. Pat. No. 6,007,543 (Ellis et al.); U.S. Pat. No. 6,027,510 (Alt); and U.S. Pat. No. 6,077,273 (Euteneuer et al.).
Another method employed for expansion of a stent at the site of stenosis relies on the removal of some restraint that holds the stent in a compressed state, such as a sheath, a collar, a clamp, or a membrane. For this method to succeed, the stent must be capable of self-expansion when the restraint is removed. Self-expanding stents can be formed from shape memory metals or super-elastic nickel-titanum (NiTi) alloys (nitinol), which will automatically expand from a compressed state when the stent is advanced out of the distal end of the delivery catheter into blood vessel once its restraining device is removed. Self-expanding stents, manufactured from expandable heat-sensitive materials, allow for phase transformations of the material to occur, resulting in the expansion and contraction of the stent.
Details of prior art self-expanding stents and their representative associated delivery systems can be found in U.S. Pat. No. 4,580,568 (Gianturco); U.S. Pat. No. 4,655,771 (Wallsten); U.S. Pat. No. 4,655,771; U.S. Pat. No. 4,732,152 (Wallsten); U.S. Pat. No. 4,848,343 (Wallsten); U.S. Pat. No. 4,830,003 (Wolff, et al.); U.S. Pat. No. 4,875,480 (Imbert); U.S. Pat. No. 4,913,141 (Hillstead); U.S. Pat. No. 4,950,227 (Savin); U.S. Pat. No. 5,071,407 (Terrain); U.S. Pat. No. 5,064,435 (Porter); U.S. Pat. No. 5,571,135 (Fraser); and U.S. Pat. No. 5,989,280 (Euteneuer et al.).
A need exists in the market place for a self-expanding stent delivery system that is effective to maintain the stent to its low profile state and allow for accurate and reliable placement within the vessel lumen at the deployment site. Such a system also should be easy to maneuver and control for the physician performing the procedure. The surgeon deploying the stent would also benefit if such a system was designed with an adjustment element to allow for quick and accurate alignment of a post-dilatation stent in the event of an inaccurate placement of the stent.
Various attempts have been made to develop delivery systems for self-expanding stents that result in accurate and reliable deployment in the vessel lumen, however, there have been some problems associated with these systems. Many incorporate delivery sheaths to restrain the stent prior to deployment. Such devices typically add to the profile of the stent delivery catheter thereby adding a possible obstacle to placement in a narrow body lumen. Often, the stent itself is not compressed to a small enough diameter to adequately navigate the tortuous vasculature of the anatomy, which can result in damage to vessel walls and inefficient delivery.
Deployment systems for self-expanding stents may also imprecisely deploy the stent due to a failure to compensate for axial energy storage in the stent itself, or frictional forces created by the delivery system. For example, systems that rely on a “push-pull” design can experience movement of the collapsed stent within the body vessel when the sheath and inner catheter are pushed together. Additionally, some self-expanding stents can store energy axially from the frictional force generated as the outer restraining sheath is retracted over the expanding stent. This can cause the stent to act somewhat like a spring, storing energy as the frictional force acts on the stent. As the stent expands beyond the end of the sheath, stored energy can be immediately released, which can cause the stent to “jump” or move from the desired position, resulting in inaccurate placement in the body vessel.
Additionally, some delivery systems fail to provide an element to permit adjustment of the post-dilatation positioning of the stent within the vessel in the event of an imprecise deployment. In these circumstances, surgeons must adjust the
Advanced Cardiovascular Systems Inc.
Fulwider Patton Lee & Utecht LLP
Phan Hieu
Willse David H.
LandOfFree
Gripping delivery system for self-expanding stents and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Gripping delivery system for self-expanding stents and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gripping delivery system for self-expanding stents and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2973657