Gripper mechanism

Material or article handling – Vertically swinging load support – Grab

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C414S730000, C414S936000, C414S941000, C294S104000, C294S119100, C294S902000, C901S031000, C901S035000, C901S039000

Reexamination Certificate

active

06592324

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to robotic gripping devices. More particularly, the invention concerns a method and apparatus to grasp an object using a pair of arms. In a preferred embodiment, the present invention grasps and transports specimen plates employed in a high throughput screening system.
BACKGROUND OF THE INVENTION
Robotic devices of myriad shapes and sizes have been constructed to perform tasks considered either too dangerous or too dreary to be performed by a person. Simple repetitive tasks, which drive human operators to distraction and error, can be performed faultlessly and quickly by robots. However, constructing a robotic system to seamlessly perform the grasping and precise positioning of objects is not a trivial task.
Many industrial fields require the precise positioning of an object for automated processing. In particular, the biotechnology field is making rapid advances by transitioning from traditional laboratory bench top processes to more automated systems. These automated systems typically perform assays or screens using a specimen or sample plate. Each sample plate has many individual sample wells, ranging from hundreds to more than a thousand wells. Because a discrete test can be conducted in each sample well, hundreds, or thousands, of tests can be performed using a few plates.
Sample plates are used in several industries, such as the biotechnology and biomedical industries. A sample plate typically has multiple sample wells on its top surface into which one or more samples can be placed, although a particular plate may have only a single well for the entire plate. Each of the wells forms a container into which a sample is placed. For example, some commonly used sample plates have 96, 384, or 1,536 wells. Such plates are available from, for example, Greiner America Corp. of Lake Mary, Fla., U.S.A. These plates may be handled manually or robotically.
For a robotic or automated system to perform with a high degree of reliability and repeatability, the system needs to accurately, quickly, and reliably position individual sample plates for processing. For example, sample plates must be placed precisely under liquid dispensers to enable the liquid dispenser to deposit samples or reagents into the correct sample wells. A positioning error of only a few thousandths of an inch can result in a sample or reagent being dispensed into a wrong sample well. Such a mistake can not only lead to a failed test, but such a mistake can lead to incorrect test results which others may rely upon for critical decision making, such as a medical treatment path for a patient. Further, even a minor positioning error may cause a needle or tip of the liquid dispenser to crash into a wall or other surface, thereby damaging the liquid dispenser.
Current, conventional automated or robotic devices are not known to operate with sufficient positioning accuracy to reliably and repeatably position a high-density sample plate for automated processing. For example, typical conventional robotic systems generally achieve a positioning tolerance of about 1 mm. Although such a tolerance is adequate for some low density sample plates, such a tolerance is unacceptable for high density plates, such as a plate with 1536 wells. Indeed, a positioning error of 1 mm for a 1536 well sample plate could cause a sample or reagent to be deposited entirely in the wrong well, or cause damage to the system, such as to needles or tips of the liquid dispenser.
Therefore, there exists a need for a robotic or otherwise automated gripper mechanism that can accurately, reliably, and quickly position an object for processing in an automated system.
SUMMARY OF THE INVENTION
In order to overcome the deficiencies with known, conventional robotic devices, a robotic gripping mechanism is provided. Briefly, the gripper mechanism includes a first arm having a first pivotable member and a second arm also having a second pivotable member, with the second arm moveably coupled to the first arm. The first and second pivotable members are structured to grasp an object therebetween. In an alternative embodiment, the pivotable members are removed, and the first and second arms are pivotable so that the edges of an object, such as a sample plate, contacts the first and second arms.
The robotic gripper mechanism according to the invention provides an accurate, extremely precise automated system for grasping, moving and positioning objects. The gripper mechanism accomplishes the accurate positioning of objects by positively locating the grasped object in all three translational coordinate axes. For example, one method employed by the present invention comprises grasping the object with two arms that include pivot members. During the grasping process, the x-axis, or side-to-side position of the object is determined. The z-axis, or vertical position of the object is also determined during the grasping process. Finally, the object is then pushed against a surface to determine a y-axis, or fore-and-aft position the object.
The gripping mechanism of the present invention affords its users with a number of distinct advantages. First, unlike prior robotic grippers, the present gripping mechanism accurately determines the three translational axes of an object with extreme accuracy. Moreover, the determination of the position of the object is performed quickly, thereby enabling high throughput processing of a large quantity of objects.
In one aspect, the present invention features a robotic gripper apparatus. The gripper apparatus includes a grasping mechanism coupled to a controller. The grasping mechanism includes a first arm and a second arm. The gripper apparatus determines the position of an object in all three translational coordinate axes with an accuracy of about 0.1 millimeters in each direction and the gripper apparatus also grasps the object.
In a preferred embodiment the robotic gripper apparatus includes: (a) a first arm including a first pivotable member; and (b) a second arm including a second pivotable member, the second arm moveably coupled to the first arm; wherein the first and second pivotable members are structured to grasp the object therebetween.
In another aspect, the invention provides a robotic gripper apparatus for grasping an object that includes: (a) means for providing first and second arms; (b) means for grasping the object with the first and second arms; and (c) means for pushing the object against a surface to position the object relative to the first and second arms.
In yet another aspect, the invention features a method of grasping an object. The method involves the steps of using a robotic gripper apparatus to determine all three translational coordinate axes of the object with an accuracy of about 0.1 millimeters in each direction and of using the robotic gripper apparatus to grasp the object. The gripper apparatus includes a grasping mechanism coupled to a controller, and the grasping mechanism includes a first arm and a second arm.
In a preferred embodiment, the method involves the steps of: (a) providing first and second arms; (b) grasping the object with the first and second arms; and (c) pushing the object against a surface to position the object relative to the first and second arms.
Finally, another aspect of the invention provides a method of moving an object. The method involves the steps of: (a) approaching the object with a robotic gripper apparatus; (b) grasping the object with the gripper apparatus; (c) removing the object from an initial position with the gripper apparatus; (d) pressing the object against a push surface with the gripper apparatus; and (e) placing the object in a new position with the gripper apparatus.


REFERENCES:
patent: 4465416 (1984-08-01), Burkhalter et al.
patent: 4662811 (1987-05-01), Hayden
patent: 4714865 (1987-12-01), Chin et al.
patent: 4715637 (1987-12-01), Hosoda et al.
patent: 4894103 (1990-01-01), Bailey
patent: 4923054 (1990-05-01), Ohtani et al.
patent: 4944650 (1990-07-01), Matsumoto
patent: 4952115 (1990-08-01), Ohkase

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gripper mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gripper mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gripper mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3087739

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.