Grid array package test contactor

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S754090

Reexamination Certificate

active

06181149

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method and apparatus for providing electrical contacts and more specifically to making electrical contacts between an electronic test apparatus and an electrical component in a grid array package.
BACKGROUND OF THE INVENTION
As more and more capability is being designed into electronic components, such as memory modules and microprocessors, there are an increasing number of leads or input/output elements being placed onto electronics packages. In the past, peripherally leaded packages provided an adequate number of leads or input/output elements. Peripherally leaded packages have leads or input/output elements along the edges of the electronic component. In many applications, such packages provide an adequate number of input/output elements. In the past few years, however, there are electronic components that require more input/output elements and require packages with more densely packed leads. Grid array packaging with input/output elements placed on the surface of the components have been used to provide additional leads. There are several types of grid arrays. Ball grid arrays and chip scale packages have hemispherical solder balls as input/output elements. Land grid arrays have flat gold plated pads as input/output elements. Pin grid arrays have gold plated pins as input/output elements.
In the past, several apparatus have been used to make electrical testing connections to grid array and other semiconductor packages. Previous test contactors have had severe limitations for high performance devices and for reliable operation when used with high volume, automated device handling equipment. Many of the problems result in poor electrical performance. Typically, this is due to long electrical path lengths within the contactor. Long electrical path lengths exhibit undesirable impedance effects which interfere with the integrity of the electrical tests being performed on the device under test. Undesirable impedance effects include long paths of uncontrolled impedance. Such uncontrolled impedance paths distort high frequency signal integrity and allow crosstalk between physically adjacent paths. Other undesirable impedance effects include parasitic inductance, capacitance, and resistance. Parasitic path inductance interferes with device power and ground sourcing by inducing voltage spikes during instantaneous electrical current changes. Parasitic capacitance presents undesirable electrical loading of device and test electronics signal sources. Parasitic resistance causes voltage errors when significant current must flow through the resistive path. This is only a partial list of undesirable impedance effects which occur with long electrical paths in test contactors.
Previous test contactors often performed poorly in high volume test environments which employ automated device handling equipment. Contactor fragility often results in contactor damage when a handling equipment error presents a device to a contactor incorrectly. Contactors often wear rapidly during high volume use resulting in wear damage to alignment features and contact surfaces. Contactors may also be too susceptible to contamination from normal production environment debris such as package resin dust and package lead solder-plating.
Spring contact pins are one type of contact used to make test contactors. Inside the body carrying the contact pin is a spring. The spring interacts with long and fragile leads. Therefore, not only is electrical performance poor because of the undesirable impedance effects due to the long leads, but the life of the spring contact pin is limited due to the fragile leads.
Wadded wire contacts are another option for contacting input/output elements in a grid array. Wadded wire contacts are made of an electrically conductive spring wire material that resemble steel wool. The wadded wire contacts are small steel wool like balls or columns that are brought into contact with the input/output elements of a grid array. The problem with wadded wire contacts is that many times the small steel wool like balls take compression set early in their operating life. Each wadded wire contact in an array of wadded wire contacts can be good at manufacture or installation in the contactor but may develop a set after being compressed a few times resulting in loss of spring characteristics. The wadded wire contact arrays must undergo extensive testing before they are used. In addition, wadded wire contacts cannot be spaced closely enough together to contact the individual input/output elements on a very high density, grid array typical of chip-scale BGA packages.
Rigid contacts with an elastomer support have also been used to contact input output/elements in a grid array. A common elastomer supports an array of rigid contacts. This type of contactor has numerous problems. For example, the constant compression and decompression of the elastomer results in a continuous scrubbing of the user interface board. This causes premature board failure. In addition, the common elastomer has a different coefficient of thermal expansion than does the electronic device under test. The differences in coefficient of linear expansion values make it difficult to hold registration between the input/output elements and the device under test over a broad range of temperature. Yet another problem is poor compliancy. This system tends to require very high compression forces to accommodate non-coplanarities in electronic devices under test.
There is a real need for a contactor which can contact grid arrays that does not have the electrical performance problems of an undesirable impedance effects associated with long leads. There is also need for a contactor that has the robustness necessary for an automated test environment. There is further need for a contactor that does not depend on temperature. There is also a need for a contactor having enhanced compliance.
SUMMARY OF THE INVENTION
A contactor apparatus used in automatic testing in a manufacturing line includes a site for receiving an electrical device with an array of input/output elements on a surface of the electrical device package. The contactor is capable of forming electrical connections with each of the elements in the array. The contactor has a guide plate including plurality of contact elements. Each contact element has a first end and a second end. The contact elements are positioned in an array which corresponds to the array of input/output elements of the electrical device. The guide plate is attached to a printed circuit having a plurality of pads. The printed circuit is external to the contactor. The pads are also situated in an array. The printed circuit is an interface to test electronics located near the printed circuit.
An anisotropic compliant conductive interposer is positioned between the contact elements of the guide plate and pads of the printed circuit. One end of a contact element contacts the anisotropic compliant conductive interposer in response to the other end of the contact element being contacted by the input/output element. The anisotropic compliant conductive interposer conducts electric signals along a path between the one end of the contact element and a pad on the printed circuit below the contact element providing contact force at the contact elements using the input/output elements on the electrical device. The anisotropic compliant conductive interposer has an elastomeric base which counteracts the force from the contact element. The end result is an electrical path from the input/output element of the electrical device to a pad on the printed circuit. The electrical path includes the contact element and a portion of the anisotropic compliant conductive interposer. The path is very short so undesirable impedance effects due to the electrical path are minimized. In addition, one end of the contact elements can be shaped to provide the best possible contact to the input/output elements on the electrical device. The other end of the contact element can be shaped to allow for a good c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Grid array package test contactor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Grid array package test contactor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Grid array package test contactor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2545101

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.