Green-light emitting phosphors and light sources using the same

Active solid-state devices (e.g. – transistors – solid-state diode – Incoherent light emitter structure – With reflector – opaque mask – or optical element integral...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S097000, C257S099000, C257S089000

Reexamination Certificate

active

06278135

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to phosphors. In particular, the invention relates to green light emitting phosphor compositions for light emitting diodes.
BACKGROUND OF THE INVENTION
Semiconductor light emitters are well known in the art. Semiconductor light emitters include light emitting diodes (LEDs) and semiconductor lasers. LEDs are devices of choice for many display applications because of advantages LEDs possess over other light sources. These advantages include a single relative size, a low operating current, an inherently colored light, a low power consumption, a long life, a maintained high efficiency (power in versus light output), an acceptable dispersal of light, and a relatively low cost of manufacture compared to other light sources.
Applications for LEDs include the replacement of light sources, such as incandescent lamps, especially where a colored light source is needed. LEDs are often used as display lights, warning lights and indicating lights. This colored light source application arises from an LED emitting radiation that produces an inherently colored light. The colored light from an LED is dependent on the type of semiconductor material relied upon and its physical characteristics. The LED has not been acceptable for lighting uses where a bright white light is needed, due to the inherent color.
LEDs rely on a semiconductor to emit light. The light is emitted as a result of electronic excitation of the semiconductor material. As radiation (energy) strikes atoms of the semiconductor material, an electron of an atom is excited and jumps to an excited (higher) energy state. (The higher and lower energy states in semiconductor light emitters are characterized as the conduction band and the valence band, respectively.) The electron, as it returns to its un-excited (lower) energy state, emits a photon. The photon corresponds to an energy difference between the excited state and lower energy state, and results in an emission of radiation, often with an optical wavelength. The methods for exciting electrons vary for semiconductor light emitters; however, one method is excitation by the well-known method of injection electroluminescence.
Semiconductors are generally classified into three types, p-type, n-type and intrinsic semiconductors. Intrinsic semiconductors comprise either p-type or n-type semiconductors, and are formed by introducing impurities (dopants) of p-type (donor) or n-type (acceptor), respectively. In an n-type semiconductor, electron conduction (negative charge) exceeds acceptor hole (absence of electrons) concentration and electronic conduction is by donor electrons. In a p-type semiconductor, the hole concentration exceeds the electrons, and conduction is by acceptor holes.
Semiconductor light emitting devices are essentially characterized by p-type material and n-type material having a pn-junction therebetween or within p-type and n-type material regions. At equilibrium, no light is emitted by the semiconductor light emitting device. If electrons from the n-type material are energized into the conduction band over holes of the p-type material, electrons are excited. Electrons, once excited, will relax from their excited energy level at the conduction band to the valence band. The relaxation results in radiation (photon) emission. The radiation is normally ultraviolet radiation with about a 370 nm wavelength, which is not visible to the human eye. Radiation, to be visible light, must possess a wavelength within the visible spectrum. Phosphors are commonly used to convert non-visible radiation into visible radiation.
While semiconductor light emitting devices, such as LED light sources, have versatile and wide spread applications, LED light sources possess some undesirable characteristics. Most notably, LED light sources are not white light sources. At least three individual and separate LEDs must be combined to produce a somewhat whitish light. The individual and separate LEDs require a separate green LED, a separate red LED, and a separate blue LED.
The use of phosphors has been attempted for converting LED radiation into visible light. For example, one yellow-whitish light emitting LED comprises a blue-light emitting LED, which has an emission wavelength equal to about 450 nm, provided with a yellow-light emitting phosphor, such as for example Y
3
Al
5
O
12
—Ce
3+
, (YAG-Ce). The yellow-light emitting phosphor absorbs radiation emitted from the LED, and converts the absorbed radiation to a yellow-whitish light.
Color temperature is a standard used to compare the color of various light, for example fluorescent, incandescent, and other light types. Color temperature is related to a temperature of black body that would give an equivalent tone of white light. In general, a lower color temperature is indicative of a redder tone of the white light. Conversely, a higher color temperature is indicative of a bluer tone of white light. There is no individual specific lamp component having a temperature equal to or determinative of the color temperature. For the yellow-whitish light described above, the color temperature falls in a range between about 6000 Kelvin to about 8000 Kelvin, with a resultant a color rendering index (CRI) less than about 85. The lumens per watt (LPW) of the above-described LED are in a range of about 5 LPW to about 10 LPW.
LED radiation at about 5 LPW to about 10 LPW with a CRI less than about 85 is not acceptable for lighting applications. Most lighting applications require a LPW that is at least 15 LPW, with a CRI maintained at or above 85, to increase the light source efficiency. Further, known LED light sources do not provide a single LED with a sufficient LPW and CRI for most generalized lighting applications especially for white light.
Green light emitting LEDs have been difficult to develop, even though acceptable yellow and red light emitting LEDs are well-known. Green light emitting LEDs are limited because they possess several undesirable shortcomings. These green LEDs possess a low intensity, brightness, and power, so their lights are not sharp and bright, nor are they high-quality (possessing wavelengths at or near the mid-point of the wavelength range for the particular color). Further, their emitted lights are not tuned at wavelengths to be combined with other light sources, such as red and blue, to provide a bright white light.
Therefore, a high-quality green light emitting LED is needed. The high-quality green light emitting LED should possess sufficient intensity, brightness, and color for lighting applications, including lamps, energizing lights, exit signs and the like.
SUMMARY OF THE INVENTION
Accordingly, it is desirable to overcome the above-noted deficiencies.
A phosphor composition that absorbs ultraviolet radiation and emits a visible light is provided in one embodiment of the invention. The phosphor composition comprises at least one of: Ba
2
SiO
4
:Eu
2+
, Ba
2
MgSi
2
O
7
:Eu
2+
, Ba
2
ZnSi
2
O
7
:Eu
2+
, BaAl
2
O
4
:Eu
2+
, SrAl
2
O
4
:Eu
2+
, and BaMg
2
Al
16
O
27
:Eu
2+
,Mn
2+
. The phosphor composition absorbs ultraviolet radiation and emits green light.
Further, the invention also sets forth a phosphor conversion material blend that absorbs ultraviolet radiation and emits a bright white light with high intensity and brightness. The phosphor conversion material blend comprises a green-light emitting phosphor composition in combination with red-light and blue-light emitting phosphors, where the green-light emitting phosphor comprises at least one of: Ba
2
SiO
4
:Eu
2+
, Ba
2
MgSi
2
O
7
:Eu
2+
, Ba
2
ZnSi
2
O
7
:Eu
2+
, BaAl
2
O
4
:Eu
2+
, SrAl
2
O
4
:Eu
2+
, and BaMg
2
Al
16
O
27
:Eu
2+
,Mn
2+
.
These and other aspects, advantages and salient features of the invention will become apparent from the following detailed description, which, when taken in conjunction with the annexed drawings, where the reference characters represent like elements, disclose embodiments of the invention.


REFERENCES:
patent: 4423349

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Green-light emitting phosphors and light sources using the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Green-light emitting phosphors and light sources using the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Green-light emitting phosphors and light sources using the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2462340

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.