Surgery – Instruments
Reexamination Certificate
2002-05-01
2004-06-01
Gibson, Roy D. (Department: 3730)
Surgery
Instruments
C600S037000
Reexamination Certificate
active
06743220
ABSTRACT:
FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to a surgical instrument and, more particularly, to a grasping device for use in minimally invasive surgery.
In recent years there has been an enormous growth in the number of surgical procedures being performed using laparoscopic techniques, best refereed to as minimally invasive surgery. This has been perhaps the most widely recognized surgical innovation since the development of anesthesia. Minimally invasive surgical procedures avoid the necessity of using large and traumatic surgical incisions into body cavities. Because minimally invasive surgery uses smaller incisions and involves less trauma it enables shorter hospital stays and a much faster surgical recovery with less pain and scarring. Minimally invasive surgery is used in all fields of surgery including general surgery, pediatric surgery, gynecology, cardio-thoracic surgery, urologic and others. For example, more than 95% of the 600,000 gallbladder operations performed each year in the U.S. are now done laparoscopically. A National Institutes of Health expert panel concluded that the laparoscopic approach to cholecystectomy is the “procedure of choice.”
Although the specific surgical techniques employed vary among procedures and between different surgical subspecialties, all minimally invasive surgical procedures generally employ video-imaging systems in order to provide anatomic visualization within the region of the body being operated upon. Achieving such visualization requires the creation and maintenance of an optical cavity, typically created with carbon dioxide insufflation. In abdominal surgery for example, using short incisions in the skin, as opposed to the long wide incisions typically employed in conventional surgery, narrow tubes are inserted through the abdominal wall so that various instruments can be passed through them to perform the surgical maneuvers necessary for the operation. The various maneuvers are viewed directly on a monitor that receives its image from a video camera attached to the laparoscope. Various specialized surgical instruments are inserted through the small access “keyhole” incisions (access ports) in the skin and utilized within the established optical cavity for the removal or repair of an organ.
One of the most basic needs required by minimally invasive surgery is the need to grasp and move adjacent tissues from the tissues on which they abut. These displaced tissues themselves often require surgical treatment upon them. Thus specific instruments are required that allow grasping, holding, manipulation and movement of organs and tissues, through small access port incisions, often in an insufflated body cavity, under endoscopic guidance. The conventionally used grasper is a forceps-like device which has the significant limitation that use of this device causes mechanical, physical trauma to the tissue or organ being grasped or taken hold of. Many of the tissues that require manipulation are delicate and very vulnerable to such mechanical damage of crush injury from the point pressure of the forceps jaws, such as is encountered during removal of tumors from the liver, manipulation of the ovaries and fallopian tubes or operation on kidney tissue. Further, these conventional devices generally have a scissors like handle making its shape uncomfortable for the surgeon to hold and use. Further the entire device needs to be sterilized after each procedure.
In order to avoid the mechanical trauma associated with the conventional forceps type grasper, several devices have been proposed that use vacuum suction for taking hold of the tissue to which the instrument has been applied. For example, U.S. Pat. No. 5,196,003 to Bilweis describes a surgical instrument, in particular for endoscopic surgery, which includes a tube with a suction cup at one end, and a bulb at the other, such that the volume of the bulb is in communication with the suction cup via the tube in order to enable the suction cup to be applied against and adhere to tissues or organs for displacement under the control of suction from the bulb. U.S. Pat. No. 5,799,661 to Boyd et al. describes a suction cup retractor has an elongated tubular shaft having a suction cup shaped manipulator at the distal end. A vacuum lumen extends through the tubular shaft and the proximal end is adapted for attachment to a vacuum source.
Both of these suction retractors suffer from significant limitations. The relatively large suction cup head exerts a high suction pressure on the tissue to which it is applied making the device liable to cause injury to the tissue. The central vacuum used requires a relatively wide tube making the size and dimensions of the device such that the device is inflexible, and the device, particularly that described by Bilweis, awkward and uncomfortable to use. Critically, the design of the devices with orifices in the suction cup in communication with the operative field, connected to a central external source of vacuum suction allows fluids within the operative cavity to be aspirated and as well, most importantly, allows the aspiration and removal of the insufflating gas within the operative cavity. The latter renders surgery under such conditions difficult at best.
There is thus a widely recognized need for, and it would be highly advantageous to have a grasping device for use in minimally invasive surgery devoid of the above limitations.
SUMMARY OF THE INVENTION
According to the present invention there is provided a surgical grasping instrument, in particular for use by a surgeon in minimally invasive surgery, for grasping, manipulating and moving the tissues and organs of a surgical patient that includes a plurality of suction cups that employ suction produced locally at the site of application.
According to one aspect of the present invention there is provided a surgical instrument for use by a surgeon for grasping a tissue of a surgical patient without causing a crush injury of the tissue, the instrument including: a. an elongate shaft, the shaft having two ends, b. a handle at a first end of the shaft, and c. a grasping tip at a second end of the shaft, the grasping tip including a body, the body housing at least one suction element, wherein the at least one suction element mechanically produces suction locally within the grasping tip.
According to another aspect of the present invention there is provided a method for grasping a tissue of a surgical patient without causing a crush injury to the tissue being grasped, the method including the steps of: a. providing a surgical instrument capable of grasping the tissue without causing a crush injury of the tissue, b. introducing the instrument to an operative site, c. placing the instrument against the tissue to be grasped, d. producing suction distally, locally in the instrument, and, e. grasping the tissue.
According to further features in preferred embodiments of the invention described below, the instrument further includes a power supply for providing electrical power to the at least one suction element.
According to still further features in the described preferred embodiments the handle includes at least one control switch for controlling an operation of the at least one suction element.
According to still further features in the described preferred embodiments the shaft is cylindrical and has a central channel therethrough.
According to still further features in the described preferred embodiments the shaft is constructed from a non-magnetic metal.
According to still further features in the described preferred embodiments the non-magnetic metal is selected from the group consisting of stainless steel and titanium.
According to still further features in the described preferred embodiments the handle, the shaft and the body of the grasping tip are all constructed as parts of a single integral structural piece.
According to still further features in the described preferred embodiments the handle, the shaft and the body of the grasping tip are each constructed as separate individual pieces and
Gorenstein Arkadi
Sheffer Michael
Friedman Mark M.
Gibson Roy D.
Johnson, III Henry M.
LandOfFree
Grasper device for use in minimally invasive surgery does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Grasper device for use in minimally invasive surgery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Grasper device for use in minimally invasive surgery will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3364740