Graphite-based heat sink

Stock material or miscellaneous articles – Self-sustaining carbon mass or layer with impregnant or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S131000, C361S709000, C165S185000, C165S905000, C165S907000, C257S712000, C257S722000, C264S118000, C264S119000, C264S128000, C264S239000

Reexamination Certificate

active

06503626

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a heat sink capable of managing the heat from a heat source like an electronic component. More particularly, the present invention relates to a graphite-based heat sink system effective for dissipating the heat generated by an electronic component.
BACKGROUND OF THE ART
With the development of more and more sophisticated electronic components, including those capable of increasing processing speeds and higher frequencies, having smaller size and more complicated power requirements, and exhibiting other technological advances, such as microprocessors and integrated circuits in electronic and electrical components and systems as well as in other devices such as high power optical devices, relatively extreme temperatures can be generated. However, microprocessors, integrated circuits and other sophisticated electronic components typically operate efficiently only under a certain range of threshold temperatures. The excessive heat generated during operation of these components can not only harm their own performance, but can also degrade the performance and reliability of the overall system and can even cause system failure. The increasingly wide range of environmental conditions, including temperature extremes, in which electronic systems are expected to operate, exacerbates these negative effects.
With the increased need for heat dissipation from microelectronic devices caused by these conditions, thermal management becomes an increasingly important element of the design of electronic products. As noted, both performance reliability and life expectancy of electronic equipment are inversely related to the component temperature of the equipment.
For instance, a reduction in the operating temperature of a device such as a typical silicon semiconductor can correspond to an exponential increase in the reliability and life expectancy of the device. Therefore, to maximize the life-span and reliability of a component, controlling the device operating temperature within the limits set by the designers is of paramount importance.
Heat sinks are components that facilitate heat dissipation from the surface of a heat source, such as a heat-generating electronic component, to a cooler environment, usually air. In many typical situations, heat transfer between the solid surface of the component and the air is the least efficient within the system, and the solid-air interface thus represents the greatest barrier for heat dissipation. A heat sink seeks to increase the heat transfer efficiency between the components and the ambient air primarily by increasing the surface area that is in direct contact with the air. This allows more heat to be dissipated and thus lowers the device operating temperature. The primary purpose of a heat sink is to help maintain the device temperature below the maximum allowable temperature specified by its designer/manufacturer.
Typically, heat sinks are formed of a metal, especially copper or aluminum, due to the ability of metals like copper to readily absorb heat and transfer it about its entire structure. In many applications, copper heat sinks are formed with fins or other structures to increase the surface area of the heat sink, with air being forced across or through the fins (such as by a fan) to effect heat dissipation from the electronic component, through the copper heat sink and then to the air.
Limitations exist, however, with the use of metallic heat sinks. One limitation relates to the relative isotropy of a metal—that is, the tendency of a metallic structure to distribute heat relatively evenly about the structure. The isotropy of a metal means that heat transmitted to a metallic heat sink becomes distributed about the structure rather than being directed to the fins where most efficient transfer to the air occurs. This can reduce the efficiency of heat dissipation using a metallic (e.g., copper) heat sink. Moreover, this relative isotropy is not readily controlled or varied, and provides no opportunity for preferentially directing heat.
In addition, the use of copper or aluminum heat sinks can present a problem because of the weight of the metal, particularly when the heating area is significantly smaller than that of the heat sink. For instance, pure copper weighs 8.96 grams per cubic centimeter (g/cc) and pure aluminum weighs 2.70 g/cc (compare with graphite articles, which typically weigh between about 1.4 and 1.8 g/cc). In many applications, several heat sinks need to be arrayed on, e.g., a circuit board to dissipate heat from a variety of components on the board. If metallic heat sinks are employed, the sheer weight of the metal on the board can increase the chances of the board cracking or of other equally undesirable effects, and increases the weight of the component itself.
What is desired, therefore, is a heat sink system effective for dissipating heat from a heat source such as an electronic component. The heat sink system should advantageously be relatively anisotropic, and more preferably have controllable anisotropic (i.e., controllable directional thermal conductivity) characteristics, as compared to a metal like copper or aluminum and exhibit a relatively high ratio of thermal conductivity to weight.
SUMMARY OF THE INVENTION
It is an object of the present invention is to provide a heat sink system exhibiting a relatively high degree of anisotropy.
Another object of the present invention is to provide a heat sink system exhibiting controllable isotropy/anisotropy.
Yet another object of the present invention is to provide a heat sink system having a relatively high ratio of thermal conductivity to weight.
Another object of the present invention is to provide a heat sink system that can be fabricated so as to locate the heat dissipation surfaces thereof so as to control and/or maximize the dissipation of heat from the heat source.
These objects and others that will become apparent to the artisan upon review of the following description can be accomplished by providing a heat sink which comprises a graphite article shaped so as to provide a heat collection surface and at least one heat dissipation surface, wherein arranging the heat collection surface of the graphite article in operative connection with a heat source facilitates dissipation of heat from the heat source through the at least one heat dissipation surface of the graphite article. The heat sink of this invention comprises particles of a comminuted resin-impregnated flexible sheet of expanded graphite, compressed into a desired shape.
Graphites are made up of layer planes of hexagonal arrays or networks of carbon atoms. These layer planes of hexagonally arranged carbon atoms are substantially flat and are oriented or ordered so as to be substantially parallel and equidistant to one another. The substantially flat, parallel equidistant sheets or layers of carbon atoms, usually referred to as basal planes, are linked or bonded together and groups thereof are arranged in crystallites. Highly ordered graphites consist of crystallites of considerable size, the crystallites being highly aligned or oriented with respect to each other and having well ordered carbon layers. In other words, highly ordered graphites have a high degree of preferred crystallite orientation. Graphites possess anisotropic structures and thus exhibit or possess many properties such as thermal conductivity that are highly directional. Briefly, graphites may be characterized as laminated structures of carbon, that is, structures consisting of superposed layers or laminae of carbon atoms joined together by weak van der Waals forces. In considering the graphite structure, two sets of axes or directions are usually noted, to wit, the “c” axis or direction and the “a” axes or directions. For simplicity, the “c” axis or direction may be considered as the direction perpendicular to the carbon layers. The “a” axes or directions may be considered as the directions parallel to the carbon layers (parallel to the planar direction of the crystal structure of the graphite) or t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Graphite-based heat sink does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Graphite-based heat sink, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Graphite-based heat sink will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3045927

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.