Graphical user interface for radiation therapy treatment...

Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S215000, C345S950000, C345S960000, C128S845000, C600S427000

Reexamination Certificate

active

06222544

ABSTRACT:

RESERVATION OF COPYRIGHT
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, as it becomes available to the public, but otherwise reserves all copyright rights whatsoever.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a radiation therapy system and, more particularly, to a system and method for efficiently delivering radiation treatment.
2. Description of the Related Art
Radiation emitting devices are generally known and used, for instance, as radiation therapy devices for the treatment of patients. A radiation therapy device generally includes a gantry which can be swiveled around a horizontal axis of rotation in the course of a therapeutic treatment. A linear accelerator is located in the gantry for generating a high energy radiation beam for therapy. This high energy radiation beam can be an electron beam or photon (X-ray) beam. During treatment, this radiation beam is trained on one zone of a patient lying in the isocenter of the gantry rotation.
To control the radiation emitted toward an object, a beam shielding device, such as a plate arrangement or a collimator, is typically provided in the trajectory of the radiation beam between the radiation source and the object. An example of a plate arrangement is a set of four plates that can be used to define an opening for the radiation beam. A collimator is a beam shielding device which could include multiple leaves, for example, a plurality of relatively thin plates or rods, typically arranged as opposing leaf pairs. The plates themselves are formed of a relatively dense and radiation impervious material and are generally independently positionable to delimit the radiation beam.
The beam shielding device defines a field on the object to which a prescribed amount of radiation is to be delivered. The usual treatment field shape results in a three-dimensional treatment volume which includes segments of normal tissue, thereby limiting the dose that can be given to the tumor. The dose delivered to the tumor can be increased if the amount of normal tissue being irradiated is decreased and the dose delivered to the normal tissue is decreased. Avoidance of delivery of radiation to the organs surrounding and overlying the tumor determines the dosage that can be delivered to the tumor.
The delivery of radiation by a radiation therapy device is prescribed and approved by an oncologist. The prescription is a definition of, for example, a particular volume and the level of radiation permitted to be delivered to that volume. Actual operation of the radiation equipment, however, is normally done by a therapist. When the therapist administers the actual delivery of the radiation treatment as prescribed by the oncologist, the radiation-emitting device is programmed to deliver that specific treatment. When programming the treatment, the therapist has to take into account the actual radiation output and has to adjust the dose delivery based on the plate arrangement opening to achieve the prescribed radiation treatment at the desired depth in the target.
The radiation therapist's challenge is to determine the best number of fields and delivered intensity levels to optimize the dose volume histograms, which define a cumulative level of radiation which is to be delivered to a specified volume. The outputs of the optimization engines are intensity maps, which are determined by varying the intensity at each “cell” in the map. The intensity maps specify a number of fields defining desired (optimized) intensity levels at each cell. The fields may be statically or dynamically modulated, such that a different accumulated dosage is received at different points in the field. Once radiation has been delivered according to the intensity map, the accumulated dosage at each cell, or dose volume histogram, should correspond to the prescription as closely as possible. In order to accurately deliver a treatment, a therapist may need to “edit” the radiation delivery from the output of the optimization engine.
In order to ensure accurate delivery of treatment, verify and record (V&R) methods are typically employed. The treatment is delivered only when all the parameters such as intensity levels, collimator leaf positions, and gantry angles have been met during the setup. As can readily be appreciated, patient treatment setup and verification information is nontrivial. Such information can include field size, gentry, collimator and table angles, dose and block and wedge codes. Typically, such information has been provided to the therapist by way of lengthy lists of numbers which must be translated into a useful form. Such lists are not only difficult to understand at a glance, but also are difficult to edit.
Accordingly, there is a need for an improved interface for display and editing of patient treatment information. There is a still further need for an improved method for monitoring and verifying ongoing treatment.
SUMMARY OF THE INVENTION
These problems in the prior art are overcome in large part by a system and method for radiation therapy delivery according to the present invention. A graphical user interface is provided for use in a patient treatment system. The graphical user interface permits graphical display and editing of individual treatment parameters, including machine positions and field shapes. Multiple fields grouped sequentially as an intensity modulated field may be viewed as a superimposed graphical composite. In addition, a pictorial representation of the radiation beams incident on a particular target is provided. A graphic representation of field shape is provided; the graphics change as treatment progresses. Finally, manipulation of graphics permits editing of treatment information, while allowing immediate feedback as to the result of the change.


REFERENCES:
patent: 5014290 (1991-05-01), Moore et al.
patent: 5138647 (1992-08-01), Nguyen et al.
patent: 5148032 (1992-09-01), Hernandez
patent: 5247555 (1993-09-01), Moore et al.
patent: 5347627 (1994-09-01), Hoffmann et al.
patent: 5394452 (1995-02-01), Swerdloff et al.
patent: 5398312 (1995-03-01), Hoffmann
patent: 5438991 (1995-08-01), Yu et al.
patent: 5563925 (1996-10-01), Hernandez
patent: 5594859 (1997-01-01), Palmer et al.
patent: 5661773 (1997-08-01), Swerdloff et al.
patent: 5668847 (1997-09-01), Hernandez
patent: 5740225 (1998-04-01), Nabatame
European Patent Search Report dated Jun. 7, 1999.
Database Inspec ISBNO-89448-198-3 Institute of Electrical Engineers, Stevenage, GB Inspec No. Proceedings of the International Conference, 1995 DeMarco J. J; Soloberg T D; Wallace R E; Smathers JB; “Performance analysis of the Monte Carlo code MCNP4A for photonbased radiotherapy applications” XP002106317 *abstract*.
Database Inspec, ISSN0360-3016 Institute of Electrical Engineers, Stevenage, GB Inspec No. Int. J. Radiat.Oncol.Biol.Pys.(UK), UK,, May 15 1995 Chaney E L; Thorn J S; Tracton G; Cullip T; Rosenman J G; Tepper JE: “A portable reconstructed radiographs” XP0022106318 *abstract*.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Graphical user interface for radiation therapy treatment... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Graphical user interface for radiation therapy treatment..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Graphical user interface for radiation therapy treatment... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2550246

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.