Graphical user interface for in-vivo imaging

Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S280000, C345S215000, C345S215000

Reexamination Certificate

active

06614452

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to user interface software running on computers or computer systems. More specifically, the invention relates to user interface systems and methods used in examining and analyzing images.
BACKGROUND OF THE INVENTION
In a computer application, there are numerous ways to present user information. Graphical user interfaces (GUIs) on computer systems allow easy use of windows, control icons, etc. to display information to the user. The data displayed in a window may be of different types. Some may be graphical, such as icons or pictures, or textual, such as a word processing document, or a combination of both.
When a computer interface is used for data management in a scientific application, the interface may include various data-specific tools and functions. To handle images, for example, an application might desirably present one or more windows for viewing the image, a tool for changing the image's appearance (e.g., sharpness), and a tool to measure features of one or more images.
Unfortunately, the unique combination of functionality required for many imaging applications is not provided in a simple and easy to use computer interface. Specifically, available user interfaces, even those developed to handle imaging applications, do not provide a suite of particular image presentation and analysis tools that allow users to manipulate and measure image features with minimal navigation through the user interface.
Interfaces for available applications typically require that the user first select or open various windows, menus, buttons, and/or tiles and then and then manipulate the resulting tool to implement a single operation pertinent to image analysis. Because the user may be required to perform numerous operations for a single image, or handle numerous images simultaneously, the available user interfaces are generally very awkward or unwieldy. Obviously this compromises user efficiency and effectiveness in evaluating images.
Specialized in-vivo imaging applications can present particular challenges to the design of an appropriate user interface. In one example, the image may include one or more representations of emissions from internal portions of a specimen superimposed on a photographic representation of the specimen. The photographic representation provides the user with a pictorial reference of the specimen. The luminescence representation indicates portions of the specimen where an activity of interest may be taking place. For example, the in-vivo data may include light emissions from specific regions of the specimen used in tracking the progression of tumor or a pathogen within the specimen.
In view of the foregoing, an improved user interface for imaging applications would be highly beneficial.
SUMMARY OF THE INVENTION
The present invention addresses this need by providing a computer user interface having a window or other feature that provides tools allowing the user to quickly define a perimeter around a “region of interest” on the image and then measure a property of the image within the region of interest. The region of interest may be bounded by an ellipse, rectangle, or other shape selected and sized by the user. Preferably, both the image and the tool for generating the region of interest reside on the same window or other interface feature. Thus, a region of interest can be generated with one or two user interface actions (e.g., clicking on a button and then dragging a perimeter to an appropriate location on the image to specify the region of interest). The property measured within the region of interest may be an average or total pixel value within the region of interest.
In accordance with one embodiment of the present invention, a computer system is provided with an image measurement window, which allows the user to perform certain operations that are particularly useful for presenting and analyzing an image. In addition to having conventional computer hardware such as a processor, memory, and a display, the computer system includes a graphical user interface having a measurement window that provides both the image itself and one or more tools for defining a region of interest on the image. When a user uses one of the tools to define a region of interest, the computer system can calculate information about a portion of the image within the defined region of interest. By providing various frequently used features in a single window, interfaces of this invention remove the need to flip between alternate windows to take advantage of these features.
Among the other features that may be provided with the image measurement window is a measurement tool. When this tool is selected, the computer system automatically calculates the information about the portion of the image when the user uses one of the tools to define the region of interest on the image. The measurement window may also include display controls for controlling at least one the following features of the displayed image: threshold, brightness, contrast, and sharpness.
In a preferred embodiment, the one or more tools for defining the region of interest allows the user to graphically create a rectangle on the image, an ellipse on the image, and/or a grid on the image. At least one of these tools may be provided as a button which, when selected, causes a region of interest to appear on the displayed image. After the region of interest is created on the image, the user can move and/or reshape the region of interest by the action of the pointer.
In addition, the present invention may provide a date stamped electronic notebook in conjunction with the image measurement window. The electronic notebook may display image analysis data (typically text pertaining to the image) such as measurement results, experimental parameters, user notes, and the like. The computer system may automatically display and date stamp image measurement results obtained via the user interface.
In another aspect of the present invention provides a user interface for presenting and analyzing an image including a photographic representation of an object and a luminescence representation of the object. The luminescence representation presents the location and magnitude of radiation emitted from the object. The user interface may be characterized by the following features: (1) a first display control permitting a user to manipulate the visual presentation of at least one of the luminescence representation and the photographic representation; (2) a second display control permitting the user to create at least one region of interest on the luminescence representation; and (3) a third display control permitting the user to make a measurement of a portion of the luminescence representation bounded by the at least one region of interest. Other display controls of the user interface may include a fourth display control that permits the user to select which of the photographic representation and the luminescence representation is to be displayed. An optional fifth display control allows the user to print some portion or all of the image.
Yet another aspect of the present invention relates to a method implemented on a computer system. The method includes analyzing a region of interest on an image presented on a display associated with the computer system. This includes defining a region of interest on the image when the user has selected a region of interest tool from a user interface presented on the display. Note that the region of interest tool and the image are concurrently displayed on the display. The method further includes calculating a property of the image within the region of interest.
Embodiments of the present invention further relate to a computer readable medium including instructions for applying the above mentioned interfaces and methods. These and other features of the present invention will be described in more detail below in the detailed description of the invention and in conjunction with the following figures.


REFERENCES:
patent: 4948975 (1990-08-01), Erwin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Graphical user interface for in-vivo imaging does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Graphical user interface for in-vivo imaging, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Graphical user interface for in-vivo imaging will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3011334

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.