Graphical programming system with distributed block diagram...

Data processing: software development – installation – and managem – Software program development tool – Editing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C717S109000, C717S127000, C345S215000

Reexamination Certificate

active

06802053

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of graphical programming and virtual instrumentation. In particular, the invention relates to a system and method wherein a graphical program block diagram executes on a server computer, and one or more client computers receive and display a graphical program user interface panel corresponding to the block diagram, wherein the graphical program user interface panel can be used to provide input to or display output to from the block diagram. The present invention further relates to a distributed virtual instrumentation system, wherein a block diagram executes on a server computer and one or more front panels are displayed on client computers.
DESCRIPTION OF THE RELATED ART
Traditionally, high level text-based programming languages have been used by programmers in writing application programs. Many different high level text-based programming languages exist, including BASIC, C, FORTRAN, Pascal, COBOL, ADA, APL, etc. Programs written in these high level languages are translated to the machine language level by translators known as compilers or interpreters. The high level text-based programming languages in this level, as well as the assembly language level, are referred to as text-based programming environments.
Increasingly, computers are required to be used and programmed by those who are not highly trained in computer programming techniques. When traditional text-based programming environments are used, the user's programming skills and ability to interact with the computer system often become a limiting factor in the achievement of optimal utilization of the computer system.
There are numerous subtle complexities which a user must master before he can efficiently program a computer system in a text-based environment. The task of programming a computer system to model a process often is further complicated by the fact that a sequence of mathematical formulas, mathematical steps or other procedures customarily used to conceptually model a process often does not closely correspond to the traditional text-based programming techniques used to program a computer system to model such a process. In other words, the requirement that a user program in a text-based programming environment places a level of abstraction between the user's conceptualization of the solution and the implementation of a method that accomplishes this solution in a computer program. Thus, a user often must substantially master different skills in order to both conceptually model a system and then to program a computer to model that system. Since a user often is not fully proficient in techniques for programming a computer system in a text-based environment to implement his model, the efficiency with which the computer system can be utilized to perform such modeling often is reduced.
Examples of fields in which computer systems are employed to model and/or control physical systems are the fields of instrumentation, process control, industrial automation, and simulation. Computer modeling or control of devices such as instruments or industrial automation hardware has become increasingly desirable in view of the increasing complexity and variety of instruments and devices available for use. However, due to the wide variety of possible testing/control situations and environments, and also the wide array of instruments or devices available, it is often necessary for a user to develop a program to control a desired system. As discussed above, computer programs used to control such systems had to be written in conventional text-based programming languages such as, for example, assembly language, C, FORTRAN, BASIC, or Pascal. Traditional users of these systems, however, often were not highly trained in programming techniques and, in addition, traditional text-based programming languages were not sufficiently intuitive to allow users to use these languages without training. Therefore, implementation of such systems frequently required the involvement of a programmer to write software for control and analysis of instrumentation or industrial automation data. Thus, development and maintenance of the software elements in these systems often proved to be difficult.
U.S. Pat. Nos. 4,901,221; 4,914,568; 5,291,587; 5,301,301; and 5,301,336; among others, to Kodosky et al disclose a graphical system and method for modeling a process, i.e., a graphical programming environment, which enables a user to easily and intuitively model a process. The graphical programming environment disclosed in Kodosky et al can be considered the highest and most intuitive way in which to interact with a computer. A graphically based programming environment can be represented at a level above text-based high level programming languages such as C, Pascal, etc. The method disclosed in Kodosky et al allows a user to construct a diagram using a block diagram editor, such that the diagram created graphically displays a procedure or method for accomplishing a certain result, such as manipulating one or more input variables to produce one or more output variables. In response to the user constructing a data flow diagram or graphical program using the block diagram editor, data structures may be automatically constructed which characterize an execution procedure which corresponds to the displayed procedure. The graphical program may be compiled or interpreted by a computer using these data structures. Therefore, a user can create a computer program solely by using a graphically based programming environment. This graphically based programming environment may be used for creating virtual instrumentation systems, industrial automation systems, modeling processes, and simulation, as well as for any type of general programming.
Therefore, Kodosky et al teaches a graphical programming environment wherein a user places or manipulates icons in a block diagram using a block diagram editor to create a graphical “program.” A graphical program for controlling or modeling devices, such as instruments, processes or industrial automation hardware, is referred to as a virtual instrument (VI). In creating a virtual instrument, a user may create a front panel or user interface panel. The front panel includes various front panel objects, such as controls or indicators, that represent or display the respective input and output that will be used by the graphical program or VI, and may include other icons which represent devices being controlled. When the controls and indicators are created in the front panel, corresponding icons or terminals may be automatically created in the block diagram by the block diagram editor. Alternatively, the user can place terminal icons or input/output blocks in the block diagram which may cause the display of corresponding front panel objects in the front panel, either at edit time or at run time.
During creation of the graphical program, the user selects various functions that accomplish his desired result and connects the function icons together. For example, the functions may be connected in a data flow and/or control flow format. The functions may be connected between the terminals of the respective controls and indicators. For example, the user may create or assemble a data flow program, referred to as a block diagram, representing the graphical data flow which accomplishes his desired function. The assembled graphical program may then be compiled or interpreted to produce machine language that accomplishes the desired method or process as shown in the block diagram.
A user may input data to a virtual instrument using front panel controls. This input data propagates through the data flow block diagram or graphical program and appears as changes on the output indicators. In an instrumentation application, the front panel can be analogized to the front panel of an instrument. In an industrial automation application the front panel can be analogized to the MMI (Man Machine Interface) of a device. The user may adjust the controls on the front panel to affect the input

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Graphical programming system with distributed block diagram... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Graphical programming system with distributed block diagram..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Graphical programming system with distributed block diagram... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3305248

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.