Graphical method and system for modeling and estimating...

Data processing: structural design – modeling – simulation – and em – Structural design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C703S007000, C345S619000, C345S646000, C052S093200, C052S272000

Reexamination Certificate

active

06816819

ABSTRACT:

BACKGROUND OF THE INVENTION
1. The Field of the Invention
This invention relates to construction estimation using a computer or similar processing device for graphically depicting the topology of the target structure. More particularly, this invention relates to modeling and estimating construction attributes such as requisite material and labor using a graphical human interface for entering and modeling the target structure floor plan and related parameters.
2. Present State of the Art
The art of estimation has been performed for generations using basic accounting techniques. For example, estimation for construction related transactions such as building and remodeling have traditionally been performed through a manual process of partitioning such tasks into a series of entities such as rooms and then generating a comprehensive list of requirements for each of the rooms. For example, in estimating the remodeling of a kitchen, an estimator performs lineal measurements to determine the quantity of items such as cabinets, sheetrock, studding, paint, etc. Generation of such a list requires the estimator to physically perform liner measurements on each of the wall segments and further perform multiplicative operations to determine the square footage associated therewith.
While such a list-mode operation for estimating is reasonably simplistic for rectangularly shaped cubical rooms, when rooms or chambers exhibit more complex dimensions such as those associated with room offsets, bay windows, and missing wall segments, manual estimation becomes increasingly more complex and subject to error resulting in either an inefficient allocation of resources or an imprecise estimation of the proposed task. Furthermore, computerized list-mode type estimating products present a cumbersome interface through which a user must define the target room or chamber undergoing estimation using cryptic and non-intuitive definitions. That is to say, in such automated programs, the estimator must individually denote and add each entry, specifying each wall segment and relationships or angles between adjacent wall segments. Such a wall-element-by-wall-element listing presents frequent opportunity for user error and, for complicated geometries such as those having missing wall segments or other custom features, requires an estimator to utilize more sophisticated and cumbersome definitional rules to result in an acceptably accurate estimation of the target room or chamber. Such sophisticated dialogue with list-mode type estimation programs present a non-trivial and non-intuitive learning curve for estimators.
Graphical-mode type estimation presents a more intuitive format through which an estimator defines or describes a target room or chamber undergoing estimation. Graphical entry type estimators heretofore have employed a line-centric approach for defining a target room undergoing estimation. For example, an estimator defines a line segment designating a specific wall followed by a subsequent line segment associated with the prior line segment forming yet a second wall and continues such a process until a series of defined line segments represent the target room undergoing estimation. Problems arise in such a line-centric approach in determining when a particular room undergoing estimation comes into “existence.” That is to say, when does a series of line segments form a closure giving rise to an entity for estimation. Additional uncertainties arise when a particular room or chamber undergoing estimation is comprised of missing line segments such as in the case of a first room “opening” into yet a second room. Furthermore, additional complications arise in associating other attributes to the aforedefined series of line segments. For example, associating a vertical height dimension of the wall with the line segments representing a linear horizontal dimension of the wall requires an estimator to perform additional definitional steps linking such attributes together.
FIG. 1
depicts a prior art sketch of a line-centric approach for defining a remodel area
10
. As depicted in
FIG. 1
, remodel area
10
is comprised of a first room
12
and a second room
28
. Room
12
is comprised of a series of line segments, line segments
14
-
26
, forming first room
12
and line segments
30
-
38
forming second room
28
.
Prior implementations of graphical interface programs for estimating chambers, such as rooms of structures, frequently employed shading (cross-hatching as shown in
FIG. 1
) or other designating techniques for partitioning a group of interconnected line segments into separable chambers or rooms. Such a process requires additional steps by the estimator in first selecting the parameter of a closed body and thereafter further partitioning their closed body using shading or other techniques for designating a yet smaller portion of the overall enclosed body.
It should further be pointed out that prior art implementations of graphical estimators heretofore have only operated on a two-dimensional rendition of a target chamber or room undergoing estimation. That is to say the line-centric graphical approach depicted in
FIG. 1
only depicts attributes consistent with the present two-dimension view generated by the estimator. This approach does not include other attributes such as those consistent with the vertical walls associated with the line segments or a ceiling associated with the room undergoing estimation when the perceivable view, as depicted in
FIG. 1
, represents the floor plan of the closed body undergoing estimation.
Therefore, significant problems exist in utilizing a nongraphical or list-mode program for estimating specific parameters of a chamber or room due to the non-intuitive nature of assembling the definition of a specific chamber or room, and furthermore, such shortcomings are exacerbated when the chamber or room undergoing estimation assumes non-cubical features or incorporates absent features such as missing wall segments as is characteristic of a first room opening into a second room. Additionally, graphical estimating programs heretofore have used a line-centric approach of concatenating a series of line segments eventually closing to form a closed two-dimensional body forming a single “entity” from which an estimation may be made. Additionally, graphical line-centric estimation programs have required additional steps by the estimator or user to specify and define portions of the closed body as a separate calculable entity and have not facilitated the assumption of attributes nor have they provided an estimator with a three-dimensional definition of the room or chamber undergoing estimation.
For these and other reasons, it appears that there exists no present modeling or estimation technique providing both a graphical and intuitive interface for an estimator to define a chamber or room undergoing estimation and derive attributes of the entire room, floors, ceilings and walls both existing and missing, directly from the definitional rendering of the target chamber or room. Furthermore, there does not currently exist a modeling technique for defining a room or chamber as a three-dimensional entity having attributes assigned to each of the facets of the room thereby facilitating the estimation of requisite components such as material and labor associated with each of the facets of the room or chamber.
OBJECTS AND BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method for modeling a chamber to enable estimation of chamber attributes for each of the facets or planes associated with the chamber undergoing estimation.
It is another object of the present invention to provide a method for hierarchically associating a first chamber having attributes for each of the facets or planes associated therewith, with a second chamber also having a plurality of facets or planes associated therewith.
It is yet another object of the present invention to provide a method for graphically estimating attributes of a room through a user interface capable of intuitively si

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Graphical method and system for modeling and estimating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Graphical method and system for modeling and estimating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Graphical method and system for modeling and estimating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3293426

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.