Graphic user interface display method

Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S215000, C345S215000, C709S219000

Reexamination Certificate

active

06353448

ABSTRACT:

FIELD OF INVENTION
The present invention relates generally to a method of displaying graphic representations of another graphic user interface in response to a query, and more particularly to a method for retrieving data relating to a graphic user interface, rendering the graphic user interface and, capturing the rendered image to a bitmapped file for display.
BACKGROUND OF THE INVENTION
A website is typically a collection of text and graphics residing on a computer accessible over a wide area network (herein “WAN”). Websites might also include sound and animation files. These files are then displayed in a predetermined configuration by a client-side application called a web browser. In theory, the screen layout of the text, graphics, sound and animations of a particular website is the same regardless of what type of browser is used. The dominant browsers currently available are the Internet Explorer® distributed by the Microsoft Corporation and the Netscape Navigator® distributed by the Netscape Corporation. Although standards have been propagated, relatively minor inconsistencies exist between each browser. These inconsistencies will only compound with the introduction and proliferation of portable devices that access the Internet through wireless connections. Cellular telephones and hand-held devices such as Palm, Inc.'s Palm Pilot VII® have access to some websites although physical limitations in the devices severely restrict their ability to display screen layouts to those viewed by Internet Explorer and Netscape Navigator. Improving screen displays has been a critical feature of current research and development into the portable devices for it is the graphic user interface that is displayed to the end-user.
In the early 1990s, websites were largely text-based. As a communication medium, they competed with modem-operated bulletin board system that were even further restricted to the ANSI character set. This produced a graphic user interface that was severely restricted in creativity and unique look and feel. As the hypertext markup language standard for website layouts continued through the
1990s, tables, textures, cascading style sheets, and even dynamically created content emerged, websites took on more aesthetic freedom and every website had the ability to look unique. However, until the late 1990s, the vast majority of end-user access to remote websites was through a modem connection at speeds from 9,600 bits per second to 56,000 bits per second. Compared to a typical low-end local area network connection (here “LAN”) of 10,000,000 bits per second, modems forced website designers to pay close attention to how much graphics, sound and animation they could include on their website pages. If too much content required transmission over the modem connection, end-users would lose their patience and move on to another website that loaded quickly. Accordingly, compressed graphic formats such as the JPEG (ISO standard 10918) became a fundamental tool in creating quick-loading websites. The bandwidth problem even forced many website developers to provide a “text only” copy of the website for end-users with slow connections.
However, with the recent introduction of higher-bandwidth connections for the end-user, website developers have much more freedom to include graphically rich content. Digital subscriber lines (herein “DSL”) can carry data over ordinary copper telephone lines at a theoretical maximum bandwidth of 8,448,000 bits per second. Cable modems, which utilize the large copper coaxial cable that delivers television programming transmits data up to nearly 30,000,000 bits per second. Accordingly, with such bandwidth, graphic user interface design is freed from earlier bandwidth constraints and therefore may be much more graphically rich. Because the graphic user interface is so important, a number of advances have occurred in website development tools. graphic user interface layout tools such as Microsoft's FrontPage®, Macromedia's Deamweaver®, Adobe System's Pagemill® and the like have dramatically lowered the learning curve for developers to produce and maintain graphically rich websites.
Search engine technology has continued to progress at a fast pace in recent years. Driven by the fuel of electronic commerce, search engines are a major starting point for end-users wishing to find products, services and information relating to their particular interest. Search engine innovations have included advances in query construction, sorting algorithms, and filtering out unwanted content. However, search engines produce relatively simple text display results. There are at least two inherent limitations in this approach. First, the end-user is assumed to have the language ability to read and understand the text display. Although language translation features for search engines are notoriously well known, many languages are not heretofore provided. Furthermore, some languages, such as Chinese, Korean, and Japanese characters are difficult to interpret correctly. Accordingly, the end-user is left to guess at what content might lie on the other side of the hyperlink.
A second limitation in the traditional approach is that the simple text listing produced by a search engine is not indicative of the quality, sophistication, and/or artistry of the linked website. As noted above, graphically rich graphic user interfaces are more common and many well-known sites have a consistent look and feel throughout all the pages in their sites. Upon viewing the first page of a website (often referred to as the “home page”), most users will determine whether they want to continue to explore that particular website or move on to another site. However, to do this, they must leave the search engine website, wait for the selected site to load and then view of the graphic user interface layout and/or associated content to determine whether they want to continue. Although the adage “never judge a book by its cover” may apply to this scenario, all too often an end-user will base his or her decision to explore a website on the aesthetic qualities of the website graphic user interface. Unfortunately, current search result listings provide no information on the graphic user interface associated with the target website.
Another trend in current technology is the emergence of the “wireless Internet.” Small communication devices such as wireless telephones and personal digital assistants such as the Microsoft Pocket PC and Palm, Inc.'s Palm Pilot VII have unique display limitations. Standards for the dissemination of information to these devices such as the Bluetooth standard aim to assist in the integration of these new devices into current information pathways. However, from the graphic user interface design point of view, multiple standards lead to new compatibility problems. For example, a well-accepted minimum resolution for personal computers is 680 pixels in width by 480 pixels in height. Accordingly, many website designers restrict the maximum dimensions of their website with that resolution in mind. Advances in browser technology have allowed the end-user's client-side browser application to pass on the end-user computer's display resolution. Many web servers are able to read this information and dynamically adjust the content to the end-user's resolution or redirect the end-user's browser to a separate set of pages geared towards higher resolutions such as 800 width by 600 height or 1024 width by 768 height. However, as emerging standards proliferate, it becomes increasing difficult to adapt common graphic user interface design to multiple platforms.
U.S. Pat. No. 6,041,143 to Chu et al. describes a multiresolution image processing system wherein images are initially stored in files that contain thumbnail data, as well as full image data structure (Col. 1, lines 63-65). Chu et as. stores only the thumbnail data and the full image data in a image file. Intermediate sized images, as those needed for zooming in on a field of interest, are more quickly calcul

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Graphic user interface display method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Graphic user interface display method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Graphic user interface display method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2862123

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.