Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Preparing granular- or free-flowing enzyme composition
Reexamination Certificate
1998-12-18
2002-07-23
Naff, David M. (Department: 1651)
Chemistry: molecular biology and microbiology
Enzyme , proenzyme; compositions thereof; process for...
Preparing granular- or free-flowing enzyme composition
C424S489000, C435S188000, C435S174000, C435S176000, C435S178000, C435S180000, C530S810000, C530S811000, C530S813000, C530S815000
Reexamination Certificate
active
06423517
ABSTRACT:
BACKGROUND OF THE INVENTION
Proteins such as pharmaceutically important proteins like hormones and industrially important proteins like enzymes are becoming more widely used. Enzymes, for example, are used in several industries including, for example, the starch industry, the dairy industry, and the detergent industry. It is well known in the detergent industry that the use of enzymes, particularly proteolytic enzymes, has created industrial hygiene concerns for detergent factory workers, particularly due to the health risks associated with dustiness of the available enzymes.
Since the introduction of enzymes into the detergent business, many developments in the granulation and coating of enzymes have been offered by the industry. See for example the following patents relating to enzyme granulation:
U.S. Pat. No. 4,106,991 describes an improved formulation of enzyme granules by including within the composition undergoing granulation, finely divided cellulose fibers in an amount of 2-40% w/w based on the dry weight of the whole composition. In addition, this patent describes that waxy substances can be used to coat the particles of the granulate.
U.S. Pat. No. 4,689,297 describes enzyme containing particles which comprise a particulate, water dispersible core which is 150-2,000 microns in its longest dimension, a uniform layer of enzyme around the core particle which amounts to 10%-35% by weight of the weight of the core particle, and a layer of macro-molecular, film-forming, water soluble or dispersible coating agent uniformly surrounding the enzyme layer wherein the combination of enzyme and coating agent is from 25-55% of the weight of the core particle. The core material described in this patent includes clay, a sugar crystal enclosed in layers of corn starch which is coated with a layer of dextrin, agglomerated potato starch, particulate salt, agglomerated trisodium citrate, pan crystallized NaCl flakes, bentonite granules or prills, granules containing bentonite, Kaolin and diatomaceous earth or sodium citrate crystals. The film forming material may be a fatty acid ester, an alkoxylated alcohol, a polyvinyl alcohol or an ethoxylated alkylphenol.
U.S. Pat. No. 4,740,469 describes an enzyme granular composition consisting essentially of from 1-35% by weight of an enzyme and from 0.5-30% by weight of a synthetic fibrous material having an average length of from 100-500 micron and a fineness in the range of from 0.05-0.7 denier, with the balance being an extender or filler. The granular composition may further comprise a molten waxy material, such as polyethylene glycol, and optionally a colorant such as titanium dioxide.
U.S. Pat. No. 5,254,283 describes a particulate material which has been coated with a continuous layer of a non-water soluble, warp size polymer. U.S. Pat. No. 5,324,649 describes enzyme-containing granules having a core, an enzyme layer and an outer coating layer. The enzyme layer and, optionally, the core and outer coating layer contain a vinyl polymer.
WO 91/09941 describes an enzyme containing preparation whereby at least 50% of the enzymatic activity is present in the preparation as enzyme crystals. The preparation can be either a slurry or a granulate.
WO 97/12958 discloses a microgranular enzyme composition. The granules are made by fluid-bed agglomeration which results in granules with numerous carrier or seed particles coated with enzyme and bound together by a binder.
It would be desirable to produce enzyme granules with improved stability, particularly in bleach-containing detergents at high humidity and temperature. Current fluid-bed spray-coated enzyme granules contain the enzyme in a relatively thin layer near the surface of the granule. This geometry renders the enzyme more vulnerable being chipped off of the granule in a concentrated layer during handling and conveying operations, increasing the likelihood and levels of airborne enzyme aerosols in the working environment. This geometry also makes the enzyme more vulnerable to attack by penetrating moisture and inactivating substances.
However, even in light of these developments offered by the industry (as described above) there is a continuing need for low-dust enzyme granules which have additional beneficial characteristics. Additional beneficial characteristics needed in the enzyme granulation industry are low-residue granule formulations (where low residue is defined as a reduced tendency to leave noticeable undissolved residues on clothes or other material), and improved stability formulations. Accomplishing all these desired characteristics simultaneously is a particularly challenging task since, for example, many delayed release or low-dust agents such as fibrous cellulose or warp size polymers leave behind insoluble residues.
As such, there is a need for, for example, a detergent enzyme granule which is simultaneously non-dusting, stable when stored in detergents, and easy to manufacture in a controlled size distribution. Granules of a controlled size distribution are desirable in order to impart good flowability properties for handling and blending into detergents, and to resist segregation and settling once formulated into detergents.
Therefore, it is an object of the present invention to provide low-dust, low residue, highly soluble enzyme granules having increased stability. It is another object of the present invention to provide processes which afford the formation of such improved granules.
SUMMARY OF THE INVENTION
The present invention provides a granule that includes a protein core that includes an protein matrix layered on a seed particle. The protein matrix includes a protein mixed together with a salt and optionally, a binder. Optionally, a coating can be applied, for example, to the seed particle or over the protein matrix.
The present invention further provides a granule that includes an enzyme core that includes an enzyme matrix layered on a seed particle. The enzyme matrix includes an enzyme mixed together with a salt and optionally, a binder. Optionally, a coating can be applied, for example, to the seed particle or over the enzyme matrix.
The present invention also provides a method for making granules including fluidizing seed particles in a fluidized bed coater; providing a protein matrix formula comprising protein mixed together with a salt; and spraying the protein matrix formula onto the seed particles. Optionally, a coating can be applied, for example, to the seed particle or over the enzyme matrix.
The present invention further provides a method for making granules including fluidizing seed particles in a fluid-bed coater; providing an enzyme matrix formula comprising enzyme mixed together with a salt; and spraying the enzyme matrix formula onto the seed particles. Optionally, a coating can be applied, for example, to the seed particle or over the enzyme matrix.
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of the invention is a granule that includes a protein core that includes a protein matrix layered over a seed particle. The protein matrix includes a protein mixed together with a salt. Optionally, a coating can be applied, for example, to the seed particle or over the enzyme matrix.
Another embodiment of the invention is a granule that includes an enzyme core that includes an enzyme matrix layered over a seed particle. The enzyme matrix includes an enzyme mixed together with a salt. Optionally, a coating can be applied, for example, to the seed particle or over the enzyme matrix.
A further embodiment of the invention is a method for making granules including fluidizing seed particles in a fluid-bed coater; providing a protein matrix formula comprising protein mixed together with a salt; and spraying the protein matrix formula onto the seed particles. Optionally, a coating can be applied, for example, to the seed particle or over the enzyme matrix.
Yet another embodiment of the invention is a method for making granules including fluidizing seed particles in a fluid-bed coater; providing an enzyme matrix formula comprising enzyme mixed together with
Becker Nathaniel T.
Christensen, Jr. Robert I.
Gros Ernst H.
Genecor International, Inc.
Genecor International, Inc.
Naff David M.
LandOfFree
Granule containing protein and salt layered on an inert... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Granule containing protein and salt layered on an inert..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Granule containing protein and salt layered on an inert... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2899951