Surgery: kinesitherapy – Kinesitherapy – Device with applicator having specific movement
Reexamination Certificate
1998-06-24
2004-09-07
DeMille, Danton D. (Department: 3764)
Surgery: kinesitherapy
Kinesitherapy
Device with applicator having specific movement
C285S093000
Reexamination Certificate
active
06786879
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to therapeutic medical devices and methods, and more particularly to devices and methods for improving venous blood flow in a patient.
BACKGROUND OF THE INVENTION
Deep vein thrombosis (DVT) and pulmonary embolism (PE) constitute major health problems in the United States. It has been estimated that 300,000 to 600,000 hospitalizations a year are attributable to DVT and PE conditions. Venous thromboembolism is also a significant risk in surgical patient populations where preoperative, operative and postoperative immobilization with concomitant loss of venous pump function causes blood stasis.
The use of prophylactic antithrombotic drugs for preventing DVT are known to the art. However, the efficacy of prophylactic administration of anticoagulants and antiplatelet agents has been disputed, and is certainly not absolute. An alternative approach, attractive because of its freedom from hemorrhagic side effects, is the use of physical techniques such as elastic stockings, passive leg exercise, electrical calf stimulation and external pneumatic compression of the legs. Pneumatic compression has been the most studied and appears to be an effective therapeutic technique. For example, the results of a comparison trial between sequential compression and uniform compression are disclosed in article by E. W. Salzman, et al., entitled
Effect of Optimization of Hemodynamics on Fibrinolytic Activity and Antithrombotic Efficacy of External Pneumatic Calf Compression,
Annals of Surgery, Vol. 206, No. 5, November (1987), pp. 636-641. Salzman et al. also discloses the lack of commercially available systems for applying external pneumatic compression in an optimized manner, based on blood flow velocity and volumetric flow rate, etc. Antithrombotic modalities based on sequential pneumatic compression are also disclosed in articles by J. A. Caprini, et al., entitled
Role of Compression Modalities in a Prophylactic Program for Deep Vein Thrombosis,
Seminars in Thrombosis and Hemostasis, Vol. 14, Supp., Thieme Medical Publishers, Inc., pp. 77-87, (1988); and Hull, et al., entitled
Effectiveness of Intermittent Pneumatic Leg Compression for Preventing Deep Vein Thrombosis After Total Hip Replacement,
Journal of the American Medical Association, Vol 263, No. 17, May, 2, 1990, pp. 2313-2317. Devices for performing sequential compression have also been patented. For example, U.S. Pat. No. 4,396,010 to Arkans, discloses a time-based sequential compression device for simultaneously inflating multiple limb sleeves. Time-based sequential compression devices are also publicly available from The Kendall Company, of Massachusetts. For example,
FIG. 1
illustrates an experimentally derived graph of an inflation cycle for a Model 5325 sequential compression device, manufactured by The Kendall Company. It is believed, however, that none of these sequential compression devices and methods provide for optimum blood flow velocity and volumetric flow rate in recumbent patients.
Thus, notwithstanding these attempts to develop compression devices for preventing deep vein thrombosis and pulmonary embolism, there continues to be a need for a gradient sequential compression system which provides a high blood flow velocity and a highly therapeutic prophylactic modality to limbs of a recumbent user.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a system and method for reducing the occurrence of deep vein thrombosis (DVT) and pulmonary embolism in recumbent users.
It is also an object of the present invention to provide a system and method for achieving a high venous blood flow rate in a limb of a user.
It is another object of the present invention to provide a system and method of sequentially establishing a gradient of compressive forces, which is pressure-based.
It is a further object of the present invention to provide a system and method of regulating a gradient of compressive forces, using real-time feedback.
It is still a further object of the present invention to provide a system and method of providing a prophylactic modality to limbs of a user in an alternating sequence.
It is another object of the present invention to provide a system and method for determining the selected mode of operation used for achieving a high venous blood flow rate in a body portion of a user based on the type of compression sleeve or the particular body portion to be treated.
It is still a further object of the present invention to provide a universal connecting device and method that identifies a mode of operation associated with a connector mated thereto and provides a signal indicative of the mode of operation to the system such that the system may be automatically configured to the selected mode of operation.
These and other objects, features and advantages of the present invention are provided by a compression system and method which provides cyclical squeezing and relaxing action to one or more limbs of a user. This occurs by sequentially establishing a decreasing gradient of compressive forces along the limbs in a proximal direction. In particular, the compression system includes one or more sleeves (e.g., calf, thigh, calf and thigh, arm, forearm, torso, etc.) which can be wrapped around and releasably secured to a limb(s) of a user. The sleeves have one or more inflatable chambers therein for retaining pressurized air upon inflation and for applying a compressive force to a limb. The compression system also includes a system controller for controlling transfers of pressurized air from an external or internal source to the inflatable chambers of the sleeves during respective inflation cycles, and for venting the pressurized air during respective deflation cycles. Transfers of air from the system controller to the sleeves are preferably provided by pneumatic connecting means which can include first and second conduit means. First and second conduit means preferably include a plurality of separate conduits or conduit ribbon.
According to one embodiment of the present invention, the system controller includes control means and first and second pluralities of feeder valves, responsive to control means, for enabling and disabling transfers of air from the source to respective ones of the inflatable chambers. Control means is provided for controlling the sequence by which the feeder valves are directionally opened and closed so that during an inflation cycle a gradient of compressive forces can be sequentially established and maintained along a limb of a user for a predetermined time interval. In particular, according to a first embodiment, control means is provided for opening only one of the feeder valves to the source of pressurized air at a time, so that each of the inflatable chambers is independently inflated and regulated (e.g., measured and adjusted). Control means preferably includes a pressure transducer and means coupled thereto for sampling the pressures in each of the inflatable chambers and adjusting the pressures based on the samples so that the chambers are maintained at predetermined pressures, even if the limb sleeves are relatively loosely or tightly wrapped or the position of the limb is adjusted during treatment.
According to an aspect of the first embodiment of the present invention, the system controller includes first and second intermediate valves, connected between the source and the respective first and second pluralities of feeder valves. The intermediate valves, which are responsive to control means as well, enable transfer of air from the source to the first and second pluralities of feeder valves during respective first and second inflation cycles and vent air from the first and second pluralities of feeder valves during respective deflation cycles. In particular, the feeder valves and intermediate valves are directionally opened and closed to facilitate inflation, measurement and adjustment of the pressures in the limb sleeves.
The system controller also preferably includes means for sensing whether pneumati
Bolam Kenneth Michael
Borgen James Arthur
DeMille Danton D.
KCI Licensing Inc.
LandOfFree
Gradient sequential compression system for preventing deep... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Gradient sequential compression system for preventing deep..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gradient sequential compression system for preventing deep... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3216330