Data processing: vehicles – navigation – and relative location – Navigation – Employing position determining equipment
Reexamination Certificate
2002-05-24
2003-06-03
Arthur, Gertrude (Department: 3661)
Data processing: vehicles, navigation, and relative location
Navigation
Employing position determining equipment
C701S205000, C701S207000, C701S214000, C701S215000, C342S357490, C342S357490, C342S357490, C342S355000
Reexamination Certificate
active
06574558
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates in general to spread spectrum receivers and in particular to GPS navigation systems such as those used in terrestrial navigation for cars, trucks and other land vehicles.
2. Description of the Prior Art
Car navigation is conventionally performed using highway and street maps aided, to some degree, by distance measurements from external sensors such as odometers. Improvements over the last 10 years in Global Positioning System, or GPS, satellite navigation receivers has spawned several GPS car navigation systems.
Conventional GPS car navigation systems use the last known position of the vehicle, and the destination data, to compute a route data base, including route and turning data derived from a pre-existing map data base. GPS receivers are conventionally operated with a minimum of 3 or 4 satellites distributed across the visible sky in order to determine, or at least estimate, the four necessary unknowns including x
user
, y
user
and z
user
which provide three orthogonal coordinates to locate the user as well as t
user
which provides the required satellite time.
Techniques such as time or clock hold and altitude hold, in which the unknown time or altitude is assumed to remain predictable from a previously determined value, e.g. z
est
and/or t
est
, have permitted operation of GPS receivers with less than 4 satellites in view. In particular, terrestrial GPS receivers have been operated with as few as 2 satellites to provide a 2 dimensional position solution using both clock and altitude hold.
Because continuous reception from 4 GPS satellites is often difficult to maintain in a car navigation environment, and known clock and altitude hold techniques can only permit operation with at least 2 satellites, known conventional car navigation systems have typically augmented the GPS position information with information from external sensors to provide dead reckoning information. The dead reckoning information is often provided by an inertial navigation system such as a gyroscope.
Augmenting GPS data with inertial navigation data has permitted the use of GPS car navigation even when less than 4 satellites are visible, such as in tunnels and in urban situations between tall buildings. However, the resultant increased complexity and costs for such combined systems have limited their acceptance.
Conventional GPS receivers use separate tracking channels for each satellite being tracked. Each tracking channel may be configured from separate hardware components, or by time division multiplexing of the hardware of a single tracking channel, for use with a plurality of satellites. In each tracking channel, the received signals are separately Doppler shifted to compensate for the relative motion of each satellite and then correlated with a locally generated, satellite specific code.
What is needed is an improved spread spectrum receiver, such as one for use with GPS navigation systems, which avoids the limitations of conventional designs and provides improved results in a wide range of reception conditions.
SUMMARY OF THE INVENTION
In one aspect, the present invention provides an improved terrestrial navigation system using a GPS receiver which can continue to navigate with continuous GPS data from less than the 3 or 4 GPS satellites commonly required. The GPS data is augmented with data from another source. The source of the augmentation data may include data from external sensors, data bases including map data bases, and/or knowledge of the physical environment within which the vehicle is to be navigated. The use of such augmentation data permits GPS satellite navigation solutions for stand-alone GPS systems as well as for GPS systems integrated with external sensors and/or map databases with less than 3 or 4 continuously visible GPS satellites.
In another aspect, the present invention provides a GPS receiver in which map data used to determine routing is also used as a source of data augmentation for a single satellite solution by providing direction of travel information.
In still another aspect, the present invention provides a method of augmenting GPS data using information from the physical environment. For example, vehicles are usually constrained to tracks no wider than the width of the roadway—and often to tracks only half the width of the roadway—and trains are constrained to the width of their tracks. This cross track constraint data may be used to provide augmentation data and allow the vehicle to continue to navigate with only a single satellite in view. The cross track constraint data permits the computation of along track data useful for calculating total distance traveled to provide a GPS based odometer measurement.
The present invention permits the computation of distance along track for use as an odometer reading while tracking only one satellite. Cross track hold provides along-track data directly which, in the case of a vehicle, directly provides distance traveled information useful in lieu of a conventional odometer reading.
In addition to clock and altitude hold, the present invention uses a technique which may be called cross-track hold in which the single satellite in view is used for determining the progress of a vehicle such as a car along its predicted track, such as a roadway. The data conventionally required from a second satellite is orthogonal to the track and therefor represents the appropriate width of the roadway. This value may be assumed and or constrained to a sufficiently small value to permit an estimate of the value, e.g. y
est
to provide a mode described herein as cross-track hold while obtaining useful GPS navigation from a single satellite in view.
In other words, in accordance with the present invention, single satellite navigation may be achieved by using the data from the single satellite for on-track navigation information while holding or estimating the time, altitude and/or cross-track navigation data.
The required augmentation data may additionally, or alternatively, be derived from other sources in the physical environment, such as turns made by the vehicle during on-track travel. In accordance with another aspect of the present invention, the vehicle may detect turns made during travel and update the current position of the vehicle at the turn in accordance with the timing of the turn. Turn detection may be accomplished by monitoring changes in the vehicle vector velocity derived from changes in the GPS derived position information or by monitoring changes in the compass heading or by any other convenient means.
In another aspect, the present invention provides a GPS system for navigating a vehicle along a track, including means for tracking at least one GPS satellite to provide on-track information related to progress of the vehicle along a selected track, means for providing an estimate of cross track information related to motion of the vehicle perpendicular to the track, and means for providing vehicle navigation data, such as vehicle position or vehicle velocity, from the on-track information and the cross-track estimate.
In still another aspect, the present invention provides a method of deriving position information from a single GPS satellite by tracking at least one GPS satellite to provide on-track information related to progress of the vehicle along a selected track, providing an estimate of cross track information related to motion of the vehicle perpendicular to the track, and determining the position of the vehicle from the on-track and the cross-track estimates.
In still another aspect, the present invention provides a method of updating GPS position information for a vehicle navigating on roadways by deriving an indication that the vehicle has made a turn at a particular point along a predetermined track, comparing the turn indication with stored navigation data to select data related to one or more predicted turns at or near the particular point, comparing the turn indication with the predicted turn data to verify that the indicated turn cor
Arthur Gertrude
Shemwell Gregory & Courtney LLP
Sirf Technology, Inc.
LandOfFree
GPS receiver with cross-track hold does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with GPS receiver with cross-track hold, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and GPS receiver with cross-track hold will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3143983