GPS compound eye attitude and navigation sensor and method

Data processing: vehicles – navigation – and relative location – Navigation – Employing position determining equipment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S215000, C701S013000, C701S004000, C342S357490, C342S357490, C343S878000

Reexamination Certificate

active

06594582

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a sensor and method for determining the attitude of vehicles, including aircraft and spacecraft, using the Global Positioning System (GPS).
BACKGROUND ART
The Global Positioning System (GPS) constellation was originally developed to give a wide variety of user vehicles an accurate means of determining position for autonomous navigation. The constellation includes 24 space vehicles (SVs) in semi-synchronous (12 hour) orbits, providing a minimum of six SVs in view for ground-based navigation. The underlying principle involves geometric triangulation with the GPS SVs as known reference points to determine the user's position to a high degree of accuracy. The GPS was originally intended for ground-based and aviation applications, gaining much attention in the commercial community (e.g., automobile navigation, aircraft landing, etc.). However, in recent years there has been a growing interest in space-based applications. Since the GPS SVs are in approximately 20,000 km circular orbits, the position of any potential user below the constellation may be easily determined. A minimum of four SVs are required so that in addition to the three-dimensional position of the user, the time of the solution can be determined and in turn employed to correct the user's clock.
Since its original inception, there have been many innovative improvements to the accuracy of the GPS determined position. These include using local area as well as wide area differential GPS, so-called “pseudolites” (ground-based GPS transmitters), and carrier-phase differential GPS. In particular, carrier-phase differential GPS measures the phase of the GPS carrier relative to the phase at a reference site, which dramatically improves the position accuracy. Also, for spacecraft applications dynamically aided GPS using orbit models with GPS measurements in an extended Kalman filter can improve position accuracy.
Early applications of this concept to user spacecraft in Low Earth Orbits (LEOs) have demonstrated extremely useful results. Recently, there have been investigations of position determination by user spacecraft from above the GPS constellation. However, since current GPS SVs transmit their signals towards the Earth, this concept poses a much more difficult problem because the user spacecraft must rely on “spillage” signals received from GPS SVs on the far side of the Earth.
Another aspect of space-based applications using GPS that has gained much recent attention is attitude determination. One of the first space-based applications was flown on the RADCAL (RADar CALibration) spacecraft, which demonstrated a GPS attitude determination capability using post-processed measurements. To obtain maximum GPS visibility, and to reduce signal interference due to multipath reflection, GPS patch antennas were placed on the top surface of the spacecraft bus. Although the antenna baselines were relatively short for attitude determination (0.67 meter separation), attitude accuracy on the order of 2 degrees per axis (3&sgr;) was achieved. Another experiment, Crista-SPAS provided the first on-orbit demonstration of real-time attitude determination. The spacecraft contained an accurate gyro reference, but the coordinate frame alignment was not measured relative to the GPS attitude reference frame, which means that discrepancies between the two reference frames might account for slightly different measurements from the two systems. Over the course of the experiment, the two sets of attitude solutions agreed to within 2 degrees, which was thought to be within the alignment tolerance of the two reference frames. The first extended real-time GPS based attitude determination mission was flown on the REX-II spacecraft, which tested actual attitude control using GPS attitude measurements.
The differential carrier-phase measurement error has a standard deviation of about 10 degrees, a small fraction of the standard wavelength. However, many error sources can significantly contribute to attitude inaccuracy. These include: reflections of the GPS carrier from the environment surrounding the antennas (multipath), electrical dissipation inherent when passing carrier-phase signals over the lengths of the RF cables between antennas and receiver (line bias errors), antenna motions due to external disturbances (e.g., thermal distortion effects), constellation availability, tropospheric refraction, and cross-talk errors. The most significant error source and the most difficult to overcome is multipath. In fact, multipath effects can be so pronounced as to be a major driver for the location of the GPS antennas on a vehicle. Despite limited successes with recent attempts at modeling multipath, this error remains a limiting factor in the performance of carrier-phase based GPS attitude determination. This is due to the complex physical nature of the reflecting surfaces, which depends mostly on antenna locations. Line biases can also adversely affect carrier-phase based attitude. These biases are typically determined by performing extensive calibrations (self survey) of the flight system on the ground prior to launch. However, since the space environment can significantly alter the physical properties of the cable through large temperature gradients, a permanent solution to this problem remains elusive. Yet another error source for the carrier-phase based method involves shifting baselines. In general, the attainable attitude accuracy improves with longer baselines. If, however, satisfactorily separating the GPS antennas requires mounting them on flexible structures (such as solar arrays, or deployable booms), then the attitude performance of the carrier-phase based method can be seriously compromised to the point where the advantages of the longer baseline is compromised. It is important to recognize that the aforementioned errors are primarily a result of the physical problems associated with using carrier-phase based measurements for attitude determination.
Before the actual GPS attitude determination can be performed, the correct number of integer wavelengths between each pair of antennas must be found. The resolution of these integer ambiguities has been extensively investigated. Such integer resolution techniques fall into two general categories: instantaneous and motion-based techniques. Instantaneous techniques provide immediate integer resolution without vehicle motion; however, the uniqueness of the solution may be severely degraded with sensor noise. Motion-based techniques use a batch of data to determine the integers; however, they rely on sufficient vehicle motion to obtain system observability. In either case, it is essential that these integers are accurately resolved before attitude determination can occur.
STATEMENT OF INVENTION
In accordance with the present invention, a GPS system for navigation and attitude determination is provided, comprising a sensor array including a convex hemispherical mounting structure having a plurality of mounting surfaces, and a plurality of antennas mounted to said mounting surfaces for receiving signals from space vehicles of a GPS constellation; and a receiver for collecting said signals and computing said navigation and attitude determination.
In accordance with another aspect of the present invention, a GPS sensor for navigation and attitude determination is provided, comprising two opposing convex hemispherical mounting structures, each of said mounting structures having a plurality of mounting surfaces, and a plurality of antennas mounted to said mounting surfaces.
In accordance with another aspect of the present invention, a GPS sensor array for navigation and attitude determination is provided, comprising a convex hemispherical mounting structure having a plurality of antenna mounting surfaces, said convex hemispherical mounting structure; and a plurality of antenna elements, each mounted to one of said mounting surfaces of said hemispherical mounting structure, wherein each of said plurality of antenna elements has a restricted field-of-view

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

GPS compound eye attitude and navigation sensor and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with GPS compound eye attitude and navigation sensor and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and GPS compound eye attitude and navigation sensor and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3026374

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.