Games using tangible projectile – Golf – Ball
Reexamination Certificate
2001-04-04
2003-09-23
Sewell, Paul T. (Department: 3711)
Games using tangible projectile
Golf
Ball
C473S371000, C473S351000
Reexamination Certificate
active
06623380
ABSTRACT:
FIELD OF THE INVENTION
This invention generally relates to golf balls, and, in particular, is directed to a composition used for the manufacture of golf ball cores comprising copper, as well as a method for the manufacture of golf ball cores using the subject composition.
BACKGROUND OF THE INVENTION
Golf balls have greatly evolved since the introduction of the first such ball, a leather sack stuffed with goose feathers. Golf ball design and technology have now advanced to the point that the United States Golf Association (USGA), the organization that sets the rules of golf in the United States, has instituted a rule that prohibits the competitive use in any USGA sanctioned event of a golf ball that can achieve an initial velocity of 76.2 meters per second (m/s), or 250 ft/s, when struck by a driver with a velocity of 39.6 m/s, i.e., 130 ft/s (referred to hereinafter as “the USGA test”). However, an allowed tolerance of two percent permits manufacturers to produce golf balls that achieve an initial velocity of 77.7 m/s (255 ft/s).
The technology does exist to produce “hot” golf balls that exceed 77.7 m/s (255 ft/s) by a wide margin in the USGA test, and such hot balls are available. However, these hot balls are not sanctioned for USGA tournaments, or for establishing a USGA handicap. Therefore, manufacturers place a great deal of emphasis on producing golf balls that consistently achieve the highest possible velocity in the USGA test without exceeding the 77.7 m/s (255 ft/s) limit, which are available with a range of different properties and characteristics, such as spin, compression, “click,” and “feel.” Thus, a variety of different balls is available to meet the needs and desires of a wide range of golfers.
Today, golf balls are generally available as one-piece (i.e., unitary), two-piece, and three-piece (i.e., wound or solid multi-component) balls. One-piece balls lack a cover, and are typically formed with a dimpled surface from a molded polybutadiene based compound. Since these balls typically spin at a high rate, and have a low velocity, they do not provide the desired distance, and are generally used as practice or driving range balls.
In contrast, two-piece golf balls, used by the typical amateur golfer, provide maximum durability and distance. These balls have a core formed of a single solid sphere, which is typically formed of a polybutadiene based compound, and a cover of SURLYN® or other similar ionomer that encloses the core.
Three-piece wound balls, which are preferred by professionals and low handicap amateur golfers for their spin characteristics and feel, include either a solid rubber or a liquid center that is covered by many meters of elastic windings. Such cores are thereafter encased in a cover formed of SURLYN®, polyurethane, or balata rubber. The winding provides three-piece balls with a higher spin rate and more control.
To meet the needs of golfers having varying levels of skill, golf ball manufacturers are continually searching for new ways in which to provide golf balls that deliver the maximum performance for golfers of all skill levels, and seek to discover compositions that provide the performance previously associated with high compression ball in balls with the lower compression desired by amateur golfers.
A number of polymers, such as polybutadiene, natural rubber, styrene butadiene, and isoprene, are commonly used in fabricating golf ball cores. Today, golf ball cores are predominantly made of polybutadiene. Moreover, to obtain the desired physical properties for golf balls, manufacturers have added cross-linking agents, such as metallic salts of an unsaturated carboxylic acid. The amount of cross-linking agent added is typically about 10 to 50 parts per hundred parts of polybutadiene. Most commonly, zinc diacrylate or zinc dimethacrylate are used for this purpose. Of these two cross-linkers, zinc diacrylate is preferred.
Typically, about 5 to 50 pph (parts per hundred) of zinc oxide (ZnO) is also added to the composition. This material serves as both a filler and an activation agent for the zinc diacrylate/peroxide cure system. The zinc diacrylate/peroxide cure system, which is well known to those of ordinary skill in this art, cross-links the polybutadiene during the core molding process. The high specific gravity of zinc oxide (5.57) can serve the dual purposes of adjusting the weight of the golf ball, in addition to acting as an activation agent.
The specific gravity of copper (8.94 g/cc) makes it a potential weight modifier for use in polybutadiene compounds. Many different patents and golf ball manufacturers allude to the use of copper in the core as a density modifier. For example, U.S. Pat. Nos. 6,152,835; 6,152,834; 6,149,536 to Sullivan et al.; U.S. Pat. No. 6,123,629 to Yamaguchi et al.; U.S. Pat. No. 6,121,357 to Yokota; U.S. Pat Nos. 6,083,119; 6,018,003; 6,015,356 to Sullivan et al.; U.S. Pat. No. 5,998,506 to Nesbitt; U.S. Pat. No. 5,971,870 to Sullivan et al.; U.S. Pat. Nos. 5,779,562; 5,779,561 to Melvin et al. and U.S. Pat. No. 4,863,167 to Matsuki et al. disclose the use of copper, and many other metals, as a core density modifier. However, none of these patents disclose or suggest any use of copper other than as a core density modifier.
U.S. Pat. Nos. 6,126,559; 6,117,025 and 5,883,553 to Sullivan et al. disclose the use of copper, among many other metals, as a filler to adjust the gravity of any layer (cover, intermediate, and/or core layer) of the golf ball. Again, none of these patents mention any other use of copper.
U.S. Pat. No. 6,136,906 to Sumitomo discloses the use of a metal salt of a higher fatty acid as a dispersing agent with zinc acrylate. Copper is cited as one of potential metal salts. There is no disclosure of copper being used in its elemental form in U.S. Pat. No. 6,136,906.
U.S. Pat. No. 4,852,884 to Sullivan et al. discloses the use of cations, including Cu
2+
, with carbamate in core formulations to improve core properties. There is no disclosure of copper being used in its elemental form in U.S. Pat. No. 4,852,884.
U.S. Pat. No. 4,688,801 to Reiter discloses the use of copper, among several metals, as an improved metal salt for curing rubber. There is no disclosure of copper being used in its elemental form in U.S. Pat. No. 4,688,801.
U.S. Pat. Nos. 4,264,075; 4,165,877 to Miller et al.; U.S. Pat. No. 4,076,255 to Moore et al.; U.S. Pat. No. 4,065,537 to Miller et al. and U.S. Pat. No. 4,056,269 to Pollitt et al. discloses copper, and several other metals, as a potential metal salt of an unsaturated carboxylic acid for use as cross linkers in rubber formulations. There is no disclosure of copper being used in its elemental form in either U.S. Pat. Nos. 4,264,075; 4,165,877; 4,076,255; 4,065,537 or 4,056,269.
U.S. Pat. Nos. 5,143,957 and 5,093,402 to Hashimoto et al. claims metal salts, including copper of &agr;, &bgr;-ethylenically unsaturated carboxylic acids that improve golf ball core properties. The preferred &agr;,&bgr;-ethylenically unsaturated carboxylic acid is zinc dimethacrylate. There is no disclosure of copper being used in its elemental form in either U.S. Pat. Nos. 5,143,957 or 5,093,402.
Co-pending and co-assigned application Ser. No. 09/607,349 recites the use of copper powder as a density adjusting filler in a layer of a golf ball comprising a saponified polymer/polyamide blend. Co-pending and co-assigned application Ser. No. 09/607,620 recites the use of copper powder as a density adjusting filler in the core layer of a golf ball comprising at least one saponified polymeric material. Co-pending and co-assigned application Ser. No. 09/608,566 recites the use of copper powder as a density adjusting filler in a layer of a golf ball formed of a polymer blend comprising at least one oxa ester or a blend of at least one saponified polymeric material and at least one oxa ester. Neither application Ser. No. 09/607,349; 09/607,620 nor 09/608,566 disclose a requirement that the amount of copper be sufficient to reduce the compression of a molded golf ball core by at least about 5 compress
Acushnet Company
Hunter, Jr. Alvina A.
Sewell Paul T.
Swidler Berlin Shereff & Friedman, LLP
LandOfFree
Golf ball core composition having copper does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Golf ball core composition having copper, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Golf ball core composition having copper will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3095218