Glycosylation engineering of antibodies for improving...

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C435S455000, C536S023100, C536S024100

Reexamination Certificate

active

06602684

ABSTRACT:

II. FIELD OF THE INVENTION
The present invention relates to the field of glycosylation engineering of proteins. More particularly, the present invention relates to glycosylation engineering to generate proteins with improved therapeutic properties, including antibodies with enhanced antibody-dependent cellular cytotoxicity.
III. BACKGROUND OF THE INVENTION
Glycoproteins mediate many essential functions in human beings, other eukaryotic organisms, and some prokaryotes, including catalysis, signalling, cell-cell communication, and molecular recognition and association. They make up the majority of non-cytosolic proteins in eukaryotic organisms. Lis and Sharon, 1993
, Eur. J. Biochem
. 218:1-27. Many glycoproteins have been exploited for therapeutic purposes, and during the last two decades, recombinant versions of naturally-occurring, secreted glycoproteins have been a major product of the biotechnology industry. Examples include erythropoietin (EPO), therapeutic monoclonal antibodies (therapeutic mAbs), tissue plasminogen activator (tPA), interferon-&bgr;, (IFN-&bgr;), granulocyte-macrophage colony stimulating factor (GM-CSF), and human chorionic gonadotrophin (hCH). Cumming et al., 1991
, Glycobiology
1:115-130.
The oligosaccharide component can significantly affect properties relevant to the efficacy of a therapeutic glycoprotein, including physical stability, resistance to protease attack, interactions with the immune system, pharmacokinetics, and specific biological activity. Such properties may depend not only on the presence or absence, but also on the specific structures, of oligosaccharides. Some generalizations between oligosaccharide structure and glycoprotein function can be made. For example, certain oligosaccharide structures mediate rapid clearance of the glycoprotein from the bloodstream through interactions with specific carbohydrate binding proteins, while others can be bound by antibodies and trigger undesired immune reactions. Jenkins et al., 1996
, Nature Biotechn
. 14:975-981.
Mammalian cells are the preferred hosts for production of therapeutic glycoproteins, due to their capability to glycosylate proteins in the most compatible form for human application. Cumming, 1991, supra; Jenkins et al., 1996, supra. Bacteria very rarely glycosylate proteins, and like other types of common hosts, such as yeasts, filamentous fungi, insect and plant cells, yield glycosylation patterns associated with rapid clearance from the blood stream, undesirable immune interactions, and in some specific cases, reduced biological activity. Among mammalian cells, Chinese hamster ovary (CHO) cells have been most commonly used during the last two decades. In addition to giving suitable glycosylation patterns, these cells allow consistent generation of genetically stable, highly productive clonal cell lines. They can be cultured to high densities in simple bioreactors using serum-free media, and permit the development of safe and reproducible bioprocesses. Other commonly used animal cells include baby hamster kidney (BHK) cells, NSO- and SP2/0-mouse myeloma cells. More recently, production from transgenic animals has also been tested. Jenkins et al., 1996, supra.
The glycosylation of recombinant therapeutic proteins produced in animal cells can be engineered by overexpression of glycosyl transferase genes in host cells. Bailey, 1991
, Science
252:1668-1675. However, previous work in this field has only used constitutive expression of the glycoprotein-modifying glycosyl transferase genes, and little attention has been paid to the expression level.
IV. SUMMARY OF THE INVENTION
The present invention is directed, generally, to host cells and methods for the generation of proteins having an altered glycosylation pattern resulting in improved therapeutic values. In one specific embodiment, the invention is directed to host cells that have been engineered such that they are capable of expressing a preferred range of a glycoprotein-modifying glycosyl transferase activity which increases complex N-linked oligosaccharides carrying bisecting G1cNAc. In other embodiments, the present invention is directed to methods for the generation of modified glycoforms of glycoproteins, for example antibodies, including whole antibody molecules, antibody fragments, or fusion proteins that include a region equivalent to the Fc region of an immunoglobulin, having an enhanced Fc-mediated cellular cytotoxicity, and glycoproteins so generated. The invention is based, in part, on the inventors' discovery that there is an optimal range of glycoprotein-modifying glycosyl transferase expression for the maximization of complex N-linked oligosaccharides carrying bisecting G1cNAc.
More specifically, the present invention is directed to a method for producing altered glycoforms of proteins having improved therapeutic values, e.g., an antibody which has an enhanced antibody dependent cellular cytotoxicity (ADCC), in a host cell. The invention provides host cells which harbor a nucleic acid encoding the protein of interest, e.g., an antibody, and at least one nucleic acid encoding a glycoprotein-modifying glycosyl transferase. Further, the present invention provides methods and protocols of culturing such host cells under conditions which permit the expression of said protein of interest, e.g., the antibody having enhanced antibody dependent cellular cytotoxicity. Further, methods for isolating the so generated protein having an altered glycosylation pattern, e.g., the antibody with enhanced antibody dependent cellular cytotoxicity, are described.
Furthermore, the present invention provides alternative glycoforms of proteins having improved therapeutic properties. The proteins of the invention include antibodies with an enhanced antibody-dependent cellular cytotoxicity (ADCC), which have been generated using the disclosed methods and host cells.


REFERENCES:
patent: 4215051 (1980-07-01), Schroeder et al.
patent: 4946778 (1990-08-01), Ladner et al.
patent: 5047335 (1991-09-01), Paulson et al.
patent: 5547933 (1996-08-01), Lin
patent: 5736137 (1998-04-01), Anderson et al.
patent: 5776456 (1998-07-01), Anderson et al.
patent: 5843439 (1998-12-01), Anderson et al.
patent: 5952203 (1999-09-01), Withers et al.
patent: 5958403 (1999-09-01), Strom et al.
patent: 0 669 836 (1996-07-01), None
patent: 0 752 248 (1997-01-01), None
patent: WO 95/24494 (1995-09-01), None
patent: WO 97/30087 (1997-08-01), None
Orkin et al. Report and recommendations of the panel to assess teh NIH investment in research on gene therapy, Dec. 1995.*
Marshall E Gene therapy's growing pains. Science vol. 269:1050-1055, Aug. 1995.*
Verma et al. Gene therapy—promises, problems and prospects. Nature vol. 389:239-242, Sep. 1997.*
Anderson WF Human gene therapy. Nature vol. 392:25-30, Apr. 1998.*
Fanger et al. Cytotoxicity mediated by human Fc receptors for IgG. Immunology Today. vol. 10(3):92-99, Mar. 1989.*
Search Report of Subject Search Conducted by Swiss Federal Institute of Intellectual Property Concerning WO 99/54342 (published international application corresponding to U.S. Appl. No. 08/294,548) dated Jul. 18, 2001.
English language abstract of Japanese Patent No. JP 09084582 A, Derwent WPI Accession No. 1997-253000 [23] (Mar. 1997).
English language abstract of German Patent No. DE 19546680 A1, Derwent WPI Accession No. 1997-321072 [30] (Jun. 1997).
English language abstract of International Patent Publication No. WO 00/52135 A2, Derwent WPI Accession No. 2000-572178 [53] (Sep. 2000).
English language abstract of International Patent Publication No. WO 00/53730 A2, Derwent WPI Accession No. 2000-594316 [56] (Sep. 2000).
English language abstract of International Patent Publication No. WO 01/29242 A2, Derwent WPI Accession No. 2001-290925 [30] (Apr. 2001).
English language abstract of European Patent Publication No. 585 083 A1, Derwent WPI Accession No. 1994-067563 [09] (1994).
English language abstract of International Patent Publication No. WO 94/12646 A1, Derwent WPI Accession No.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Glycosylation engineering of antibodies for improving... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Glycosylation engineering of antibodies for improving..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Glycosylation engineering of antibodies for improving... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3117286

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.