Glycosylated humanized B-cell specific antibodies

Drug – bio-affecting and body treating compositions – Conjugate or complex of monoclonal or polyclonal antibody,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S130100, C424S133100, C424S155100, C530S387300, C530S388850, C530S391300, C530S391700

Reexamination Certificate

active

06254868

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates generally to immunoconjugates for diagnostic and therapeutic uses in cancer. In particular, the invention relates to recombinantly produced humanized monoclonal antibodies directed against B-cell lymphoma and leukemia cells, which antibodies can be covalently conjugated to a diagnostic or therapeutic reagent without loss of antibody binding and internalization function and with reduced production of human anti-mouse antibodies.
Non-Hodgkins lymphoma (NHL) and chronic lymphocytic leukemia are B-cell malignancies that remain important contributors to cancer mortality. The response of these malignancies to various forms of treatment is mixed. They respond reasonably well to chemotherapy, and, in cases where adequate clinical staging of NHL is possible, as for patients with localized disease, satisfactory treatment may be provided using field radiation therapy (Hall et al.,
Radiology for the Radiologist
, Lippincott, Philadelphia, 1989, pp 365-376). However, the toxic side effects associated with chemotherapy and the toxicity to the hematopoietic system from local, as well as whole body, radiotherapy, limits the use of these therapeutic methods. About one-half of the patients die from the disease (Posner et al.,
Blood
, 61: 705 (1983)).
The use of targeting monoclonal antibodies conjugated to radionuclides or other cytotoxic agents offers the possibility of delivering such agents directly to the tumor site, thereby limiting the exposure of normal tissues to toxic agents (Goldenberg,
Semin. Nucl. Med
., 19: 332 (1989)). In recent years, the potential of antibody-based therapy and its accuracy in the localization of tumor-associated antigens have been demonstrated both in the laboratory and clinical studies (see., e.g., Thorpe,
TIBTECH
, 11: 42 (1993); Goldenberg,
Scientific American, Science
&
Medicine
, 1: 64 (1994); Baldwin et al., U.S. Pat. Nos. 4,925,922 and 4,916,213; Young, U.S. Pat. No. 4,918,163; U.S. Pat. No. 5,204,095; Irie et al., U.S. Pat. No. 5,196,337; Hellstrom et al., U.S. Pat. Nos. 5,134,075 and 5,171,665). In general, the use of radio-labeled antibodies or antibody fragments against tumor-associated markers for localization of tumors has been more successful than for therapy, in part because antibody uptake by the tumor is generally low, ranging from only 0.01% to 0.001% of the total dose injected (Vaughan et al.,
Brit. J. Radiol
., 60: 567 (1987)). Increasing the concentration of the radiolabel to increase the dosage to the tumor is counterproductive generally as this also increases exposure of healthy tissue to radioactivity.
LL2 (EPB2) is a highly specific anti-B-cell lymphoma and anti-lymphocytic leukemia cell murine monoclonal antibody (mAb) that is rapidly internalized by such cells and that can overcome some of the aforementioned difficulties (Shih et al.,
Int. J. Cancer
, 56: 538 (1994)). LL2, which is of the IgG2a antibody type, was developed using the Raji B-lymphoma cell line as the source of antigen (Pawlak-Byczkowska et al.,
Cancer Res
., 49: 4568 (1989)). Murine LL2 (mLL2) is known to react with an epitope of CD22 (Belisle et al.,
Proc Amer. Assn. Clin. Res
., 34: A2873 (1993)). CD22 molecules are expressed in the cytoplasm of progenitor and early pre-B cells, and appear in the cell surface of mature B-cells.
By immunostaining of tissue sections, mLL2 was shown to react with 50 of 51 B-cell lymphomas tested. mLL2 provides a highly sensitive means of detecting B-cell lymphoma cell in vivo, as determined by a radioimmunodetection method (Murthy et al.,
Eur. J. Nucl. Med
., 19: 394 (1992)). The Fab′ fragment of mLL2 labeled with
99m
Tc localized to 63 of 65 known lesions in Phase II trial patients with B-cell lymphoma (Mills et al.,
Proc. Amer. Assn. Cancer Res
., 14: A2857 (1993)). In addition,
131
I-labeled mLL2 was therapeutically effective in B-cell lymphoma patients (Goldenberg et al.,
J. Clin. Oncol
., 9: 548 (1991)). mLL2 Fab′ conjugated to the exotoxin PE38KDEL induced complete remission of measurable human lymphoma xenografts (CA-46) growing in nude mice (Kreitman et al.,
Cancer Res
., 53: 819 (1993)).
The clinical use of mLL2, just as with most other promising murine antibodies, has been limited by the development in humans of a human anti mouse antibody response (HAMA). While a HAMA response is not invariably observed following injection of mLL2, in a significant number of cases patients developed HAMA following a single treatment with mLL2. This can limit the diagnostic and therapeutic usefulness of such antibody conjugates, not only because of the potential anaphylactic problem, but also as a major portion of the circulating conjugate may be complexed to and sequestered by the circulating anti-mouse antibodies. This is exemplified by one study in which about 30% of the patients developed low level HAMA response following a single injection of about 6 mg of mLL2
131
I-IgG and nearly all developed a strong HAMA response with additional injections. On the other hand, with mLL2 Fab′ labeled with
99m
Tc, no HAMA response was observed. Such HAMA responses in general pose a potential obstacle to realizing the full diagnostic and therapeutic potential of the mLL2 antibody.
As noted above, the use of fragments of mLL2, such as F(ab′)
2
and Fab′, partially alleviates/circumvents these problems of immunogenicity. However, there are circumstances in which whole IgG is more desirable, such as when induction of cellular immunity is intended for therapy, or where an antibody with enhanced survival time is required.
For monoclonal antibodies to function as the delivery vehicles for drugs and radionuclides, it is of prime importance to develop methods for their site-specific conjugations, with minimal perturbation of the resultant immunoreactivities. Most commonly, the conjugation of drugs and radionuclides are accomplished through their covalent attachments to side chains of amino acid residues. Due to the non-site-restricted nature of these residues, it is difficult to avoid undesirable couplings at residues that lie within or are in close vicinity to the ABS, leading to reduced affinity and heterogenous antigen-binding properties. Alternatively, conjugation can be directed at sulfhydryl groups. However, direct labeling relies on the reduction of S-S bonds, with the possible risk of protein fragmentation.
U.S. patent application Ser. No. 08/289,576, now abandoned, but refiled as continuation application, U.S. patent application Ser. No. 08/690,102, now U.S. Pat. No. 5,789,554, issued on Aug. 4, 1998, the entire disclosure of which is incorporated herein by reference, discloses a humanized mAb having a naturally occurring N-linked glycosylation site found at amino acid positions 18-20 of the LL2 VK domain for site-specific drug or chelate conjugation. The attached carbohydrate moiety was positioned away from, and demonstrated no physical contacts with, the antigen binding site (ABS). The immunoreactivity of the antibody was not affected when chelates such as DTPA were conjugated to the carbohydrate.
However, there are limitations to the usefulness of this antibody. For one, it is not clear what size and type of chelates can be attached before immunoreactivity is affected. We have determined that attachment of larger chelates does affect the binding affinity. Thus, attachment of an 18 kD Dox-dextran to the carbohydrate at position 18-20 of the LL2 VK domain reduces immunoreactivity to about 50%. Furthermore, it would be very advantageous to engineer other antibodies to contain active glycosylation sites. Engineering other antibodies so that glycosylation sequences are present in the variable region is difficult because the engineering steps would need to be repeated for each antibody. Furthermore, the immunoreactivity of the construct might be affected.
IgG glycosylation at Asn-297 in the CH2 Fc domain has been well-characterized as important for the maintenance of antibody stability and the appropriate structure for proper effector functions. See Tao and Mo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Glycosylated humanized B-cell specific antibodies does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Glycosylated humanized B-cell specific antibodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Glycosylated humanized B-cell specific antibodies will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2500284

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.