Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Enzymatic production of a protein or polypeptide
Reexamination Certificate
2007-06-08
2010-10-05
Tate, Christopher R (Department: 1651)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Enzymatic production of a protein or polypeptide
C424S188100, C530S388300, C530S395000
Reexamination Certificate
active
07807405
ABSTRACT:
A chemoenzymatic method for the preparation of a homogeneous glycoprotein or glycopeptide, including (a) providing an acceptor selected from the group consisting of GlcNAc-protein and GlcNAc-peptide; and (b) reacting the acceptor with a donor substrate including an activated oligosaccharide moiety, in the presence of a catalyst comprising endoglycosidase (ENGase), to transfer the oligosaccharide moiety to the acceptor and yield the homogeneous glycoprotein or glycopeptide. The donor substrate includes, in a specific implementation, a synthetic oligosaccharide oxazoline. A related method of glycoprotein or glycopeptide remodeling with a predetermined natural N-glycan or a tailor-made oligosaccharide moiety, and a method of remodeling an antibody including a heterogeneous sugar chain, are also described. The disclosed methodology enables glycoprotein drugs to be modified for prolonged half-life in vivo, reduced immunogenicity, and enhanced in vivo activity, and for targeting and drug delivery.
REFERENCES:
patent: 5122368 (1992-06-01), Greenfield et al.
patent: 2004/0137557 (2004-07-01), DeFrees et al.
patent: 2005/0159341 (2005-07-01), Wang et al.
patent: 2005/0176642 (2005-08-01), Wang et al.
patent: 2005/0244424 (2005-11-01), Wang
patent: 2007/0224211 (2007-09-01), Wang
Li, B., et al. “Highly Efficient Endoglycosidase-Catalyzed Synthesis of Glycopeptides Using Oligosaccharide Oxazolines as Donor Substrates”J. Am. Chem. Soc., 2005, 127 (27), pp. 9692-9693.
Rizzuto, C.D., et al. “A Conserved HIV gp120 Glycoprotein Structure Involved in Chemokine Receptor Binding” Science 1998, 280, pp. 1949-1953.
Ermolat'ev, D., et al. “Indirect Coupling of the 2(1H)-pyrazinone Sacffold with Various (oligo)-saccharides via ‘click chemistry’: en route towards Glycopeptidomimetics” QSAR & Combinatorial Science, 2004, 23(10), pp. 915-918.
Varki A. 1993. Biological roles of oligosaccharides—all of the theories are correct.Glycobiology, 3(2): 97-130.
Dwek, R. A. 1996. Glycobiology: Toward understanding the function of sugars.Chem. Rev., 96(2): 683-720.
Jefferis R. 2005. Glycosylation of recombinant antibody therapeutics.Biotechnol. Prog., 21(1): 11-6.
Davis B. G. 2004. Biochemistry—Mimicking posttranslational modifications of proteins.Science, 303(5657): 480-482.
Macmillan D., Bertozzi C. R. 2004. Modular assembly of glycoproteins: towards the synthesis of GlyCAM-1 by using expressed protein ligation.Angew. Chem., 116: 1379-1383;Angew. Chem. Int. Ed.2004, 43, 1355-1359.
Geng X., Dudkin V. Y., Mandal M., Danishefsky S. J. 2004. In pursuit of carbohydrate-based HIV vaccines, Part 2: The total synthesis of high-mannose-type gp120 fragments—evaluation of strategies directed to maximal convergence.Angew. Chem., 116, 2616-2619;Angew Chem. Int. Ed.2004, 43, 2562-2565.
Macmillan D., Bill R. M., Sage K. A., Fern D., Flitsch S. L. 2001. Selective in vitro glycosylation of recombinant proteins: semi-synthesis of novel homogeneous glycoforms of human erythropoietin.Chem. Biol., 8(2): 133-145.
Watt G. M., Lund J., Levens M., Kolli V. S., Jefferis R., Boons G. J. 2003. Site-specific glycosylation of an aglycosylated human IgG1-Fc antibody protein generates neoglycoproteins with enhanced function.Chem. Biol., 10(9): 807-814.
Mezzato S., Schaffrath M., Unverzagt C. 2005. An orthogonal double-linker resin facilitates the efficient solid-phase synthesis of complex-type N-glycopeptide thioesters suitable for native chemical ligation.Angew. Chem., 117, 1677-1681;Angew. Chem. Int. Ed.2005, 44(11): 1650-1654.
Fumoto M., Hinou H., Matsushita T., Kurogochi M., Ohta T., Yamada K., Takimoto A., Kondo H., Inazu T., Nishimura S. 2005. Molecular transporter between polymer platforms: Highly efficient chemoenzymatic glycopeptide synthesis by the combined use of solid-phase and water-soluble polymer supports.Angew. Chem., 117, 2590-2593;Angew. Chem. Int. Ed.2005, 44(17): 2534-2537.
Yamamoto K. 2001. Chemo-enzymatic synthesis of bioactive glycopeptides using microbial endoglycosidase.J. Biosci. Bioeng., 92(6): 493-501.
Takegawa K., Tabuchi M., Yamaguchi S., Kondo A., Kato I., Iwahara S. 1995. Synthesis of neoglycoproteins using oligosaccharide-transfer activity with endo-beta-N-acetylglucosaminidase.J. Biol. Chem., 270(7): 3094-3099.
Haneda K., Inazu T., Yamamoto K., Kumagai H., Nakahara Y., Kobata A. 1996. Transglycosylation of intact sialo complex-type oligosaccharides to the N-acetylglucosamine moieties of glycopeptides by Mucor hiemalis endo-beta-N-acetylglucosaminidase.Carbohydr. Res., 292: 61-70.
Wang L. X., Fan J. Q., Lee Y. C. 1996. Chemoenzymatic synthesis of a high-mannose-type N-glycopeptide analog with C-glycosidic linkage.Tetrahedron Lett., 37(12): 1975-1978.
Haneda K., Tagashira M., Yoshino E., Takeuchi M., Inazu T., Toma K., Iijima H., Isogai Y., Hori M., Takamatsu S., Fujibayashi Y., Kobayashi K., Yamamoto K. 2004. Chemo-enzymatic synthesis and structure-activity study of artificially N-glycosylated eel calcitonin derivatives with a complex type oligosaccharide.Glycoconjugate J., 21(6): 377-386.
Singh S., Ni J., Wang L. X. 2003. Chemoenzymatic synthesis of high-mannose type-HIV-1 gp120 glycopeptides.Bioorg. Med. Chem. Lett., 13(3): 327-330.
Li H., Singh S., Zeng Y., Song H., Wang L. X. 2005.Bioorg. Med. Chem. Lett.2005, 15(4): 895-898.
Wang L. X., Song H., Liu S., Lu H., Jiang S., Ni J., Li H. 2005. Chemoenzymatic synthesis of HIV-1 gp41 glycopeptides: Effects of glycosylation on the anti-HIV activity and alpha-helix bundle-forming ability of peptide C34.ChemBioChem, 6(10): 1068-1074.
Crout D. H., Vic G. 1998. Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis.Curr. Opin. Chem. Biol., 2(1): 98-111.
Brameld K. A., Shrader W. D., Imperiali B., Goddard, 3rd W. A. 1998. Substrate assistance in the mechanism of family 18 chitinases: Theoretical studies of potential intermediates and inhibitors.J. Mol. Biol., 280(5): 913-923.
Terwisscha van Scheltinga A. C., Armand S., Kalk K. H., Isogai A., Henrissat B., Dijkstra B. W. 1995. Stereochemistry of chitin hydrolysis by a plant chitinase lysozyme and X-ray structure of a complex with allosamidin—Evidence for substrate assisted catalysis.Biochemistry, 34(48): 15619-15623.
Mark B. L., Vocadlo D. J., Knapp S., Triggs-Raine B. L., Withers S. G., James M. N. 2001. Crystallographic evidence for substrate-assisted catalysis in a bacterial beta-hexosaminidase.J. Biol. Chem., 276(13): 10330-1033.
Fujita M., Shoda S., Haneda K., Inazu T., Takegawa K., Yamamoto K. 2001. A novel disaccharide substrate having 1,2-oxazoline moiety for detection of transglycosylating activity of endoglycosidases.Biochim. Biophys. Acta, 1528(1): 9-14.
Ochiai H., Ohmae M., Kobayashi S. 2004. Enzymatic glycosidation of sugar oxazolines having a carboxylate group catalyzed by chitinase.Carbohydr. Res., 339(17): 2769-2788.
Dudkin V. Y., Crich D. 2003. A short synthesis of the trisaccharide building block of the N-linked glycans.Tetrahedron Lett., 44(9): 1787-1789.
Shing T. K. M., Perlin A. S. 1984. Synthesis of benzyl 2-azido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranoside and 1,6-anhydro-2-azido-2-deoxy-4-O-β-D-glucopyranosyl-β-D-glucopyranose.Carbohydr. Res.1984, 130, 65-72.
Nakabayashi S., Warren C. D., Jeanloz R. W. 1986. A new procedure for the preparation of oligosaccharide oxazolines.Carbohydr. Res., 150(1): C 7-C10.
Twaddle G. W. J., Yashunsky D. Y., Nikolaev A. V. 2003. The chemical synthesis of β-(1,4)-linked D-mannobiose and D-mannotriose.Org. Biomol. Chem., 1(4): 623-628.
David S., Malleron A., Dini C. 1989. Preparation of oligosaccharides with β-D-mannopyranosyl and 2-azido-2-deoxy-β-D-mannopyranosyl residues by inversion at C-2 after coupling.Carbohydr. Res., 188: 193-200.
Günther W., Kunz H. 1992. Synthesis of β-D-mannosides from β-D-glucosides via an intramolecular SN2 reaction at C-2.Carbohydr. Res., 228(1): 217-241.
Günther W., Kunz H. 1990. Synthesis of a beta-mannosyl-chitobiosyl-asparagine conjugate—a
Fuierer Marianne
Kosar Aaron J
Moore & Van Allen PLLC
Tate Christopher R
University of Maryland Baltimore, Office of Commercial Ventures
LandOfFree
Glycoprotein synthesis and remodeling by enzymatic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Glycoprotein synthesis and remodeling by enzymatic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Glycoprotein synthesis and remodeling by enzymatic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4195308