Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving glucose or galactose
Reexamination Certificate
2000-08-23
2002-11-05
Redding, David A. (Department: 1743)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving glucose or galactose
C435S026000, C435S287100, C436S095000, C436S148000, C604S891100, C604S892100
Reexamination Certificate
active
06475750
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to a biosensor for measuring the concentration of glucose molecules in a solution, and more particularly to an implantable glucose monitoring device using a pressure transducer and a glucose sensitive hydrogel having an immobilized glucose binding molecules (GBM), an immobilized charged pendant group, and an immobilized hexose saccharide, the device being proportionally responsive to increases in glucose levels in the physiological fluids such as blood when it is implanted.
2. State of the Art
Diabetes is one of the major diseases in the United States. In 1995, there were approximately sixteen million Americans suffering from diabetes, including those undiagnosed. It is estimated that 650,000 new cases are diagnosed each year. Diabetes was the seventh leading cause of the death listed on U.S. death certificates in 1993, according to the National Center for Health Statistics. There are two major types of diabetes: type I diabetes (10% of diabetes cases in the United States), and type II diabetes (90% of diabetes cases in the United States). Type I diabetes is caused by an insulin deficiency due to the destruction of the pancreatic beta cells, and requires daily treatment with insulin to sustain life. Type II diabetes is caused by target organ insulin resistance resulting in a decreased responsiveness to both endogenous and exogenous insulin, and is usually managed by diet and exercise but may require treatment with insulin or other medication. Most people diagnosed with type II diabetes are over 40 years old.
Diabetes disturbs the body's ability to control tightly the level of blood glucose, which is the most important and primary fuel of the body. Insulin is a critical hormone needed to keep glucose concentrations within very narrow physiological limits in normal people though high levels of carbohydrates may be consumed. Not only is insulin secreted by the beta cells of the pancreas, but also its levels are rapidly regulated by glucose concentrations in the blood. Insulin allows the passage of glucose into the targets cells, which contain receptors for uptake of glucose. Diabetic patients with an elevated glucose level in the blood, hyperglycemia, have either an insulin deficiency or a decreased responsiveness to insulin. Hyperglycemia adversely affects other physiological processes. For example, hyperglycemia causes severe water loss and dehydration. Water loss can be so severe that it decreases blood pressure, and the reduced blood pressure may lead to brain damage. As discussed in National Diabetes Data Group, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, “Diabetes In America,” 2nd edition, NIH Publication No. pp. 95-1468, (1995), patients of diabetes are often subject to destructive alterations of other physiological processes, causing blindness, heart attack, stroke, periodontal disease, neuropathy, nephropathy, and atherosclerosis resulting from hyperglycemia. Tissue damage can be so extensive that amputations are required to save the patient. Also, there is always the danger in diabetics of hypoglycemia due to diet, with an insulin injection required to bring the blood glucose level back up to normal. Hypoglycemic episodes can occur without the diabetic patient being aware of it. It is required to maintain a balance between insulin injection and glucose consumption to prevent hypoglycemia. However, the condition is not fatal if proper care is taken.
In treating diabetic patients, the aim is to tightly regulate the plasma glucose level within the normal physiological range (80-120 mg/dL), so that diabetic adverse effects can be avoided. Self-monitoring of blood glucose levels using dry chemical strips with a single drop of blood is considered a major advance in diabetes management. This in vitro method of monitoring of blood glucose. has two main disadvantages. The first is that sampling of blood is associated with the risk of infection, nerve and tissue damage, and discomfort to patients. The second disadvantage is the practical limitation in self-monitoring which arises because the sampling frequency is not great enough for tight control of blood glucose levels close to normal ranges over a 24-hr period. Thus, as an aid to diabetes therapy, continuous monitoring of blood glucose concentrations in vivo has long been recognized as a major objective as a future tool in the fight against diabetes.
During the past decade, intense effort has been directed toward the development of glucose monitoring biosensors as an aid to diabetes therapy. Development of an implantable glucose sensor that is specific to glucose and sensitive enough to precisely measure glucose levels in vivo would be a significant advance in the treatment of diabetes. Such ability to more closely control blood glucose levels would help prevent complications commonly brought on by diabetes. Such a sensor would also greatly facilitate glucose level data collection, glycemia research, and development of an insulin delivery system responsive to glucose levels in diabetic patients.
Several new implantable techniques have been developed for glucose analysis in clinical practice based on electrochemical principles and employing enzymes such as glucose oxidase (GOD) for glucose recognition. Potentially implantable glucose biosensors based on electrochemical transducers are the most highly developed, and this class of sensors can be further subdivided into potentiometric sensors, conductometric sensors, and amperometric sensors. The local pH change due to production of gluconic acid in the GOD reaction can be measured with a pH-selective electrode or an ion selective field effect transistor (ISFET), which is the basis of the potentiometric method. Similarly, in the conductometric method, changes in the electrical resistance due to the progress of the GOD reaction are measured. At present, neither the potentiometric method nor the conductometric method appears to be suitable for in vivo glucose monitoring due to: (a) interference by species other than glucose in the physiological environment; (b) low sensitivity and logarithmic dependence of the signal on the glucose concentration. A linear dependence of the signal on glucose concentration is highly desirable because of the need for repeated recalibrations over time for implanted glucose sensors. However, non-linear calibration curves can be handled reasonably well using microprocessors.
The most advanced glucose sensors for in vivo monitoring are electrochemical sensors using the amperometric technique, possibly because they do offer the possibility for a linear calibration curve. In the amperometric method, an electrode is used which produces a current proportional to the diffusional flux of hydrogen peroxide (H
2
O
2
) to the electrode surface, or, alternatively, proportional to the diffusional flux of oxygen (O
2
) to the electrode surface. A membrane layer containing immobilized GOD surrounds the electrode. The glucose reaction catalyzed by GOD produces hydrogen peroxide and consumes oxygen. An increase in the surrounding glucose concentration should increase the diffusional flux of glucose into the membrane and increase the reaction rate within the membrane. The increase in reaction rate in turn should increase the local hydrogen peroxide concentration and decrease the local oxygen concentration within the membrane. This should lead to an increase in the current detected by a hydrogen peroxide-based electrode sensor, or a decrease in current as detected by an oxygen-based electrode sensor. The latter approach, based on detecting the oxygen flux, also requires a second oxygen-based electrode sensor located in a hydrogel without the GOD enzyme. This second electrode is used as a reference.
Amperometric sensors must overcome several hurdles before they will ever be useful for commercial in vivo monitoring. Current glucose sensor designs appear unlikely to solve these difficult problems in the near future. The first hurdle
Bae You Han
Han In Suk
Jung Dal Young
Magda Jules John
M-Biotech, Inc.
Redding David A.
LandOfFree
Glucose biosensor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Glucose biosensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Glucose biosensor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2932635