Glove for making goniometric measures

Surgery – Diagnostic testing – Measuring anatomical characteristic or force applied to or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06325768

ABSTRACT:

The invention relates to a glove, and more particularly to a glove for making goniometric measurements and a method of manufacture of such a glove.
Goniometric measurements of the hand have previously been provided by a number of different gloves incorporating various sensors. An early example is a glove which uses optical flex sensors such as those detailed in U.S. Pat. No. 4,542,291. The optical sensor works on the principle that increasing the angle of bend of the sensor decreases the amount of light reaching a photosensitive detector.
The glove described in U.S. Pat. No. 4,542,291 is difficult to put on deformed, in correctly formed or temporarily misshapen hand. Furthermore, optical flex sensors are made from optical fibres, which are expensive and if damaged require replacement. Complex electronic circuitry is required to convert signals from the photosensitive detector into angular measurements.
A fibre optic instrumented elastic fabric glove has been proposed for evaluating hand function in a paper entitled “Evaluation of a Fibre Optic Glove for Semi-Automated Goniometric Measurements”, Journal of Rehabilitation, Research and Development, Volume 27, no. 4, 1990, pages 411 to 424. However, this glove does not fit easily over an abnormally shaped hand or unusually sized hand. Two conversion programmes are essential to covert signals from the photosensitive detectors to useful angular measurements.
More recently, U.S. Pat. No. 5,280,265 has proposed a goniometric glove incorporating variable resistance strain sensing elements to detect complex joint movements for gesture recognition applications. This glove is aimed at utilising identified gestures to produce vocal or written symbols. Again, in deformed, or unusually sized hands, it is difficult to put on and requires complex electronics for conversion of signals from the sensors to useful angular measurements.
Providing the glove with open finger tips or a palm mesh has also been suggested for use in gripping objects or providing ventilation to the gloved hand.
Where gloves are difficult to apply to a wearer's hand, the likelihood of breakage of sensors, especially fragile sensors, and sensor connections is increased during glove application and removal. Furthermore, if a glove is not applied correctly, the sensors may not be in the appropriate position with respect to an individual's joints for reliable and accurate measurements to be made. Indeed the latter two gloves are only available in one size, thus, accurate placement of sensors with regard to different hand sizes and/or shapes is difficult.
U.S. Pat. No. 5,086,785 proposes various angular displacement sensors, such as carbon ink resistance sensors, which can be used as bend sensors affixed to a glove to determine hand position for controlling video games.
It can be seen that there is a problem with existing gloves in that they are difficult to put on, in a clinical situation in patients with temporarily or permanently misshapen hands, for example, rheumatoid arthritic hands. In some cases it is difficult to position the sensors accurately over the joints of normal hands, and this is even more of a problem with misshapen hands.
There is also a need to provide a glove for goniometric measurements which does not require complex electronics in order to output useful angular measurements.
It is therefore an object of the invention to alleviate at least some of the problems of the prior art.
It is therefore an object of the invention to alleviate at least some of the problems of the prior art.
In a first aspect, the invention provides a glove having an open aspect along at least one digit so as to facilitate application of the glove to a hand.
The glove of the invention is particularly, but not exclusively, suitable for use in the assessment of hand mobility for medical purposes, eg prior to and following surgical procedures, or for measuring the mobility of prostheses. Other applications, including virtually reality imaging and gesture recognition, are envisaged, that is, the glove may be used as an interface device for a computer.
Measurements which may be taken with the glove of the invention include angular, angular range, speed, velocity and acceleration measurements of a wearer's hand.
According to the the invention there is provided a glove used in goniometric measurements comprising a palmer having one or more finger sections and a dorsal panel having one or more corresponding finger sections the glove being characterised by:
a palmar panel having one or more finger sections extending from the base of a wearers's finger to a first point part way between the base of the finger and the distal interphalangeal joint of a wearer;
a dorsal panel having one or more corresponding finger sections extending from the base of a wearer's finger to a second point beyond the distal interphalangeal joint of the wearer; and
attachment means for attaching those portions of the dorsal panel finger sections which extend beyond the palmar panel finger sections, to a wearer's finger.
In a preferred embodiment, each panel comprises four finger sections. Preferably, each panel comprises a thumb section, the palmar panel thumb section extending from the base of the thumb to a point part way between the base of the thumb and the interphalangeal joint; the dorsal panel thumb section extending from the base of the thumb to a point beyond the interphalangeal joint.
In a preferred embodiment, adjacent finger sections on one panel extend to corresponding points having regard to a wearer's finger joints.
Preferably, the attachment means are located on the dorsal panel finger sections. The attachment means may be releasable, and preferably comprises a self attaching and releasable material, for example, VELCRO loop and hook fastner. Preferably the attachment means comprises straps attached to each of the overhanging dorsal digit sections.
In a preferred embodiment, the palmar panel is permanently connected to the dorsal panel from a point adjacent to the thumb interphalangeal joint to a point adjacent to the wrist on the radial side of the glove. Alternatively, or preferably in addition, the palmar panel is permanently connected to the dorsal panel from a point adjacent to the fifth digit proximal interphalangeal joint to a third point beyond the line passing through the metacarpophalangeal (MCP) joints of the hand, on the ulnar side of the glove. Preferably the point is around 2 cm beyond the MCP line.
Preferably, the connections are permanent and are formed by stitching, gluing, heat welding or the like.
Further attachment means may be provided on the ulnar side of the glove to close the glove from around the third point to the wrist. Preferably, the further attachment means are releasable. The attachment means may comprise one or more straps having, for example, VELCRO fasteners and corresponding VELCRO panels situated on the glove.
A plurality of sensor pockets may be located about the glove. Preferably, carbon ink sensors are provided at locations about the glove.
In a further preferred embodiment, one or more sensor pockets contain first and second sensors arranged so as to measure bending in substantially opposite directions.
Preferably, one or more sensor pockets comprises two or more sensors arranged to measure bending of different joints. One pocket per finger containing two, or preferably three sensors, may be provided. The sensors in each pocket may overlap. A layer of insulating material may be placed beneath the or each sensor within a pocket for electrical safety. Prior to insertion into a pocket, the sensors are sprayed with a non-conducting coating such as Conformat acrylic coating RS 714462 for electrical safety. The sensor/wire contact area is reinforced with silicone sealant or the like.
In a further preferred embodiment, there is provided a goniometric measurement system comprising a glove as herein described and an electronic processing unit, preferably comprising at least one constant current source and preferably one per sensor. Pref

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Glove for making goniometric measures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Glove for making goniometric measures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Glove for making goniometric measures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2578076

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.