Glide test head with active fly height control

Dynamic magnetic information storage or retrieval – Checking record characteristics or modifying recording...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S078040, C324S212000

Reexamination Certificate

active

06366416

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the field of rigid disc drives, and more particularly, but not by way of limitation, to a glide test head assembly for use in evaluating surface characteristics of a magnetic recording disc.
BACKGROUND
Data storage devices of the type known as “Winchester” or “hard” disc drives are well known in the industry. Such disc drives record digital data on a plurality of circular, concentric data tracks on the surfaces of one or more rigid discs. The discs are typically mounted for rotation on the hub of a brushless direct current (dc) spindle motor. In disc drives of the current generation, spindle motors rotate the discs at speeds of up to 10,000 revolutions per minute (rpm).
Data are recorded to and retrieved from the discs by an array of vertically aligned read/write head assemblies, or heads, which are controllably moved from track to track by an actuator assembly. The read/write head assemblies typically consist of an electromagnetic transducer carried on an air bearing slider. This slider acts in a cooperative hydrodynamic relationship with a thin layer of air dragged along by the spinning discs to fly the head assembly in a closely spaced relationship to the disc surface. In order to maintain the proper flying relationship between the head assemblies and the discs, the head assemblies are attached to and supported by head suspensions or flexures.
The actuator assembly used to move the heads from track to track has assumed many forms historically, with most disc drives of the current generation incorporating an actuator of the type referred to as a rotary voice coil actuator. A typical rotary voice coil actuator consists of a pivot shaft fixedly attached to the disc drive housing base member closely adjacent to the outer diameter of the discs. The pivot shaft is mounted such that its central axis is normal to the plane of rotation of the discs. An actuator housing is mounted to the pivot shaft by an arrangement of precision ball bearing assemblies, and supports a flat coil which is suspended in the magnetic field of an array of permanent magnets, which are fixedly mounted to the disc drive housing base member. On the side of the actuator housing opposite to the coil, the actuator housing also typically includes a plurality of vertically aligned, radially extending actuator head mounting arms, to which the head suspensions mentioned above are mounted.
When current is applied to the coil, a magnetic field is formed surrounding the coil which interacts with the magnetic field of the permanent magnets to rotate the actuator housing, with the attached head suspensions and head assemblies, in accordance with the well-known Lorentz relationship. As the actuator housing rotates, the heads are moved radially across the data tracks along an arcuate path.
As the physical size of disc drives has decreased historically, the physical size of many of the disc drive components has also decreased to accommodate this size reduction. Similarly, the density of the data recorded on the magnetic media has been greatly increased. In order to accomplish this increase in data density, significant improvements in both the recording heads and recording media have been made.
For instance, the first rigid disc drives used in personal computers had a data capacity of only 10 megabytes, and were in the format commonly referred to in the industry as the “full height, 5¼″” format. Disc drives of the current generation typically have a data capacity several gigabytes in a 3½″ package which is only one fourth the size of the full height, 5¼″ format or less. Even smaller standard physical disc drive package formats, such as 2½″ and 1.8″, have been established. In order for these smaller envelope standards to gain market acceptance, ever greater recording densities must be achieved.
The recording heads used in disc drives have evolved from monolithic inductive heads to composite inductive heads (without and with metal-in-gap technology) to thin-film heads fabricated using semi-conductor deposition techniques to the current generation of thin-film heads incorporating inductive write and magneto-resistive (MR) read elements. This technology path was necessitated by the need to continuously reduce the size of the gap in the head used to record and recover data, since such a gap size reduction was needed to reduce the size of the individual bit domain and allow greater recording density.
Since the reduction in gap size also meant that the head had to be closer to the recording medium, the quest for increased data density also lead to a parallel evolution in the technology of the recording medium. The earliest Winchester disc drives included discs coated with “particulate” recording layers. That is, small particles of ferrous oxide were suspended in a non-magnetic adhesive and applied to the disc substrate. With such discs, the size of the magnetic domain required to record a flux transition was clearly limited by the average size of the oxide particles and how closely these oxide particles were spaced within the adhesive matrix. The smoothness and flatness of the disc surface was also similarly limited. However, as the size of contemporary head gaps allowed data recording and retrieval with a head flying height of about 3,000 Angstroms (Å), corresponding to about 300×10
−9
meters (300 nm) or about 12×10
−6
inches (12 &mgr;in), the surface characteristics of the discs were adequate for the times.
Disc drives of the current generation incorporate heads that fly at nominal heights of around 380 A (about 38 nm or 1.5 &mgr;in), with efforts underway to reduce this flying height to below 250 A (25 nm or 1.0 &mgr;in). Clearly, the surface characteristics of the discs must be much more closely controlled to accommodate such reduced flying heights.
In current disc drive manufacturing environments, it is common to subject each disc to component level testing before it is assembled into a disc drive. One type of disc test is referred to as a “glide” test, which is used as a go
o-go test for surface defects or asperities, or excessive surface roughness. A glide test typically employs a precision spin stand and a specially configured glide test head including a piezo-electric sensing element, usually comprised of lead-zirconium-titanate (PbZrTi
3
), also commonly known as a “pzt glide test head.” The glide test is performed with the pzt glide test head flown at approximately half the flying height at which the operational read/write head will nominally fly in the finished disc drive product. If the glide test is completed without contact between the pzt glide test head and any surface defects, then the disc is passed on the assumption that there will be no contact between the operational heads and the discs during normal operation.
On the other hand, if contact occurs between the pzt glide test head and a defect on the disc surface, the disc is subjected to a burnishing process in an attempt to remove or reduce the size of the offending media surface defect. The disc is retested and, if the burnishing operation was successful, the disc is approved for incorporation into a disc drive. Any disc which fails to pass the glide test after burnishing is scrapped.
A variant of the glide test, often used by disc media manufacturers, is sometimes referred to as a “glide avalanche” or GA test. In GA testing, a pzt glide test head is first flown at a greater than normal flying height above the disc surface. This initial increased flying height is commonly achieved by rotating the disc under test at a greater than normal speed, thus increasing the linear velocity between the disc and the test head, and increasing the strength and thickness of the air bearing supporting the test head above the disc surface.
The rotational speed of the disc under test is then gradually reduced until contact between the test head and disc occurs, at which point the current flying height is recorded. Correlation of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Glide test head with active fly height control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Glide test head with active fly height control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Glide test head with active fly height control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2866539

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.