Glazing provided with a conducting and/or low emissive functiona

Stock material or miscellaneous articles – Structurally defined web or sheet – Including components having same physical characteristic in...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

428 34, 428428, 428432, 428697, 428698, 428699, 428701, 428702, 5278611, B32B 1706

Patent

active

055209963

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION



Field of the Invention

The invention relates to a glazing comprising a glass substrate provided with a thin functional coating, the latter having transparency, electrical-conductivity and/or low emissivity properties.
It also relates to processes for obtaining such a glazing, more particularly with the aid of pyrolysis methods or methods using a vacuum.
This type of functional coating is more particularly used for equipping glazings to be used in buildings, coated with a low emissive coating, a glass substrate making it possible to reduce emission in the far infrared through the glazing of which it forms part from the inside to the outside of the room. By reducing energy losses partly due to said radiation escape, there is a significant improvement to the comfort of the persons located therein, particularly in winter. The thus covered substrate can be combined with another substrate by means of a layer of gas, the low emissive coating being located on the inside and in particular face 3 (counting from the outermost face) so as to form a highly effective, insulating double glazing.
These coatings can also be used on glazings to be employed in cars, as a result of their electrical conductivity properties, e.g. for forming heated glazings by providing current intakes.
Coatings of metal oxides having these properties are e.g. coatings of tin-doped indium oxide (ITO), zinc oxide doped with aluminium (ZnO:Al), with indium (ZnO:In), with tin (ZnO:Sn) or with fluorine (ZnO:F) or fluorine-doped tin oxide (SnO.sub.2 :F).
These metal oxide coatings can be obtained by different processes, such as vacuum processes (thermal evaporation, cathodic sputtering, optionally with the aid of a magnetron) or by the pyrolysis of metalorganic compounds projected by a vector gas in liquid, solid or gaseous form onto the surface of the glass substrate heated to a high temperature, but which is still below its softening point. The latter, contacted with a hot surface, decompose accompanied by oxidation in order to form a metal oxide coating thereon. The latter procedure is particularly advantageous to the extent that it makes it possible to envisage deposits directly on the ribbon of glass of a float-production line in a continuous manner.
However, for said coatings to reach a high performance level, particularly with respect to the emissivity and/or electrical conduction values, their thickness must be at least 180 nm, or beyond 400 nm and is usually between 300 and 450 nm.
However, when a thin coating has such characteristics, it gives the substrate which it coats an appearance in reflection on the "coating side", which may not be very highly appreciated from the esthetic standpoint.
Thus, for example, according to the teaching of EP-B-125 153, a fluorine-doped tin oxide coating SnO.sub.2 :F, whose limited thickness of 163 to 165 deposited on a 4 mm thick clear float glass substrate gives the latter a colouration in reflection in the blue, which is at present highly appreciated both in the building and car fields.
However, it has been found that a coating of the same nature, but in this case with a thickness of 360 nm, i.e. a coating with better performance characteristics, gives the same substrate an appearance in reflection on the coating side in the red-greenish range, i.e. a colouration which would be considered relatively unpleasing for the eye. Moreover, the coated substrate has a light reflection value R.sub.L on the coating side higher than 10 or 15% and a colour purity associated with said reflection which can exceed 10 to 15%, which means a definitely coloured and reflecting appearance of the substrate on the coating side (i.e. the side which is generally installed in face 3 of a double glazing installed in a building, i.e. that which is seen from the outside on viewing the facade. It is pointed out that the value of the purity indicates the intensity of the colour, the closer it is to 0%, the more it appears "whitewashed" and pastel. Therefore the colour is evaluated relative to the value

REFERENCES:
patent: 4440822 (1984-04-01), Gordon
patent: 5318830 (1994-06-01), Takamatsu
patent: 5342676 (1994-08-01), Zagdoun
patent: 5387433 (1995-02-01), Balian

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Glazing provided with a conducting and/or low emissive functiona does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Glazing provided with a conducting and/or low emissive functiona, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Glazing provided with a conducting and/or low emissive functiona will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-785403

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.