Glass fiber separators for lead-acid batteries

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Include electrolyte chemically specified and method

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S142000, C429S252000

Reexamination Certificate

active

06495286

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of batteries and, more specifically, to separators containing glass fibers which are positioned between the positive and negative plates of batteries and to a method for producing such separators. As is subsequently discussed in more detail, separators containing glass fibers are well known. Long before glass fiber separators, however, cedar veneers were used as a separator material, and were replaced by microporous, hard rubbery separators and cellulose separators impregnated with resins.
2. Description of the Prior Art
Valve regulated (“sealed”—“recombinant”) lead acid (VRLA) batteries are known; they usually comprise a plurality of positive and negative plates, as in a prismatic cell, or layers of separator and positive and negative electrodes wound together, as in a “jelly roll” cell. The plates are arranged so that they alternate, negative-positive-negative, etc., with separator material and paste separating each plate from adjacent plates. The separator, which, typically, is a mat of glass fibers, is an inert material; it stores battery acid, applies a force to paste-grid interfaces, and provides low electric resistance. In addition, in VRLA batteries, there are innumerable gas channels in the separator material through which oxygen can migrate from the positive electrode, when generated there, to the negative electrode where it can be recombined with hydrogen, according to the oxygen cycle. One of the most important functions of a separator in a VRLA battery is to force the paste into contact with the plates, and cause a pressure between the plates.
Glass fiber separator material, typically, is produced commercially on paper making equipment including fourdrinier machines and rotoformers, inclined fourdrinier machines and extended wire rotoformers. In the production of separator made of glass fibers for VRLA batteries, it is preferred that no organic material be added to a furnish from which separator sheets are made; the entanglement of individual fibers serves to maintain the sheet in a cohesive structure, and water glass, which sometimes forms on the fiber surfaces, serves as a binder. Organic binders, however, tend to decrease the ability of a separator to wick acid, and to decrease the amount of acid a separator can hold. A great deal of work has been directed to modifying the glass fiber furnish from which separators are produced to improve battery performance and/or lower the cost of the separator. Some of the work has entailed the addition of synthetic fibers for various reasons, such as the use of thermoformable plastic fibers so that the separator can be heat sealed on its edges to envelop a plate. Other work, which pertains to the field of this invention, has been directed to the use of filler, e.g., silica, to provide separators which are comparable to all glass fiber separators, at a lower cost. Separators made from glass fibers to which cellulose has been added and polyolefin fibers to which cellulose has been added have also been suggested. Prior art patents are discussed below.
U.S. Pat. No. 4,465,748 (Harris) discloses glass fiber sheet material for use as a separator in an electrochemical cell, and made from 5 to 35 percent w/w of glass fibers less than 1 &mgr;m in diameter; the patent also discloses a glass fiber sheet for such use wherein there are fibers of a continuous range of fiber diameters and lengths, and most of the fibers are not over 5 mm in length.
U.S. Pat. No. 4,216,280. (Kono et al.), discloses glass fiber sheet material for use as a plate separator in a battery, and made from 50 to 95 percent w/w of glass fibers less than 1 &mgr;m in diameter and 50 to 5 percent w/w of coarser glass fibers. The coarser glass fibers, the reference says, have a fiber diameter larger than 5 &mgr;m, preferably larger than 10 &mgr;m, and it is advantageous for some of the coarser fibers to have diameters of 10 &mgr;m to 30 &mgr;m.
U.S. Pat. No. 4,205,122 (Minra et al) discloses a battery separator of reduced electric resistance comprising a self supporting, non woven mat consisting essentially of a mixture of olefinic resin fibers having a coarseness of from 4 to 13 decigrex and olefinic resin fibers having a coarseness of less than 4 decigrex, the latter fibers being present in an amount of not less than 3 parts by weight per 100 parts by weight of fibers; up to about 600 parts by weight of inert filler materials per 100 parts by of fibers can also be used. The battery separator is produced by subjecting a suitable aqueous dispersion to a sheet-forming operation, drying the resulting wet, non-woven mat, and heat treating the dried mat at a temperature ranging from a point 20° lower than the melting point of the aforementioned fibers to a point about 50° higher than the melting point.
U.S. Pat. No. 4,216,281 (O'Rell et al.) discloses a separator material produced from a furnish containing 30 to 70 percent w/w of polyolefin synthetic pulp, 15 to 65 percent w/w of a siliceous filler and 1 to 35 percent w/w of “long” fibers which can be polyester fibers, glass fibers, or a mixture of the two. Cellulose in an amount up to about 10 percent w/w is disclosed as an optional ingredient of the furnish.
U.S. Pat. No. 4,363,856 (Waterhouse) discloses a separator material made from a furnish composed of polyolefin pulp fibers and glass fibers, and names polyester staple fibers, polyolefin staple fibers and cellulose pulp fibers as alternative constituents of the furnish.
U.S. Pat. No. 4,387,144 (McCallum) discloses a battery separator having a low electrical resistance after extended use which is made by thermal consolidation and thermal embossing of a paper web formed from a furnish containing a synthetic pulp the fibrils of which are filled with an inorganic filler, the web incorporating a wetting agent which is preferably an organic sulphonate, and organic succinate, or phenol ethoxylate.
U.S. Pat. No. 4,373,015 (Peters et al.), discloses sheet material for use as a separator in a battery, and “comprising organic polymeric fibers”; both of the examples of the reference describe the sheet material as “short staple fiber polyester matting about 0.3 mm thick”, and indicate that the polyester fibers range from about 1 &mgr;m to about 6 &mgr;m in diameter.
Sheet separators for use in conventional (not valve regulated) batteries and comprising both glass fibers and organic fibers are disclosed in all of the following U.S. Pat. No. 4,529,677 (Bodendorf); U.S. Pat. No. 4,363,856 (Waterhouse); and U.S. Pat. No. 4,359,511 (Strzempko).
U.S. Pat. No. 4,367,271, Hasegawa, discloses storage battery separators composed of acrylic fibrils in an amount of up to about 10 percent w/w, balance glass fibers.
Japanese patent document 55/146,872 discloses a separator material comprising glass fibers (50-85 percent w/w) and organic fibers (50-15 percent w/w).
U.S. Pat. No. 4,245,013, Clegg et al., discloses a separator made by overlaying a first sheet of fibrous material including polyethylene fibers with a second sheet of fibrous material including polyethylene and having a synthetic pulp content higher than the first sheet.
U.S. Pat. No. 4,908,282, Badger, discloses a separator comprising a sheet made from first fibers which impart to the sheet an absorbency greater than 90% and second fibers which impart to the sheet an absorbency less than 80% wherein the first and second fibers are present in such proportions that the sheet has an absorbency of from 75 to 95%. This patent discloses that fine glass fibers have a high absorbency, that coarse glass fibers have a low absorbency, and that hydrophobic organic fibers have an extremely low absorbency, and that, when this separator is saturated with electrolyte, unfilled voids remain so that gas can transfer from plate to plate for recombination. The disclosure of Badger is incorporated herein by reference.
U.S. Pat. No. 5,091,275 (Brecht et al.) discloses a glass fiber separator which expands when exposed to electrolyte. The separat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Glass fiber separators for lead-acid batteries does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Glass fiber separators for lead-acid batteries, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Glass fiber separators for lead-acid batteries will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2944726

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.