Glass breakage detection using gas discharge lighting

Radiant energy – Photocells; circuits and apparatus – Optical or pre-photocell system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S240100

Reexamination Certificate

active

06583405

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to lighting systems, and more particularly to lighting systems used near glass processing machinery.
In industrial operations in which glass objects are processed, glass breakage is a significant concern. Some of the more obvious concerns include product safety and product spoilage. Some less obvious, but still significant, concerns are worker safety and productivity. In an industrial setting, when a glass object is broken by a glass processing machine, such as a glass container filling machine, or by a conveyor line, the machine or line is typically shut down until the broken glass is located and removed. The failure to locate all or substantially all of the broken glass can create a workplace hazard. Also, the longer it takes to locate and remove the broken glass, the longer the machine sits idle, the longer some workers sit idle, the longer some workers spend performing the task, and the greater productivity declines. The present invention relates to a new use for a known type of lighting to provide for better, easier, and faster location and removal of broken glass from around glass processing machines.
Gas discharge lighting is well known in the art. In a gas discharge light, atoms or molecules of a gas inside a tube are ionized by an electric current passing through the gas or by a radio frequency or microwave field in proximity to the tube. This excitation of the gas generates light, typically visible or ultraviolet (UV). One common gas discharge lamp is a fluorescent lamp, which is commonly used in homes, offices, and industrial settings. In fluorescent lamps, lights, or tubes, electrodes are provided at opposite ends of a tube, and the tube ends are sealed, typically with mercury and a gas such as argon sealed within the tube at low pressure. The inside of the tube is coated with one or more phosphors that produce visible light when excited by UV radiation. When power is applied to the lamp, the mercury and gas mixture emits primarily UV radiation, which comes primarily from the mercury. The invisible UV radiation excites the phosphor coating, and the phosphor coating emits visible light. A fluorescent lamp typically requires a starting voltage of several hundred volts to initiate the UV radiation discharge, but once the discharge is initiated, a much lower operating voltage is needed, such as under approximately 100 V for tubes under 30 watts and approximately 100 V to approximately 175 V for tubes of 30 watts or more. A ballast is used to provide the initial, temporary increase in starting voltage and then to serve as a current limiter. Fluorescent lighting has a number of advantages over incandescent lighting and is useful in industrial lighting applications. Still, fluorescent lighting does not provide the advantages of the present invention in making it easier and faster to locate and remove broken glass from an area around glass processing machines. “Neon” lights are also known in the art. “Neon” lamps, lights, or tubes are commonly used in commercial signs. Similar to fluorescent lamps, in “neon” lamps, lights, or tubes, electrodes are provided at opposite ends of a tube, and the tube ends are sealed, typically with one or more gases, such as neon or argon sealed within the tube at low pressure. The inside of the tube is sometimes coated with one or more phosphors, depending upon the color desired. Although such lamps are often known generically as “neon” lights, gases other than neon may be used depending upon the desired color. Typical gases used in neon lights include, but are not limited to neon, argon, helium, hydrogen, krypton, nitrogen, and xenon, and combinations thereof. Further, neon gas may not even be present in “neon” tubes. “Neon” lights typically operate at high voltage that is typically not less than approximately 2,000 volts and that is more typically within a range of from approximately 2,000 volts to approximately 15,000 volts. Similarly, “neon” lights typically operate at a low amperage that is typically not greater than approximately 120 milliamps and that is more typically within a range of from approximately 30 milliamps to approximately 120 milliamps.
To further confuse the distinction between “neon” lights and fluorescent lights, neon gas may occasionally be present in fluorescent lights. Still, there are significant differences between fluorescent and “neon” lights that, in accordance with the present invention, render “neon” lights particularly useful for locating and removing broken glass from around glass processing machines. For example, “neon” lights use higher operating voltage and lower operating amperage to provide a brighter, more intense light. Also, a transformer is used in connection with a “neon” light to provide a continuous source of high operating voltage, in the thousands of volts, and low operating amperage, in the milliamp range, as opposed to a ballast used in connection with a fluorescent light to provide an initial, temporary increase in voltage, or starting voltage, typically in the hundreds of volts, and then to serve as a current limiter. As used in this specification, the term “high operating voltage gas discharge” lamp or light or tube is used to refer to what is commonly, generically considered a “neon” lamp or light or tube regardless of whether neon gas is actually present in such lamp, light, or tube and regardless of the current passing through such lamp, light, or tube, so long as the operating current or voltage is not less than approximately 2,000 volts. In this manner, the term “high operating voltage gas discharge” lamp or light or tube is used to distinguish such “neon” lamps, lights, or tubes from what is commonly, generically considered fluorescent lamps, lights, or tubes. The phrase “high operating voltage” further distinguishes “neon” lights from fluorescent lights that may have moderate or high “starting” voltages but that have lower “operating” voltages.
Before the present invention, “neon” lights were used primarily for ornamental purposes in commercial signs. Before the present invention, there was no recognition that “neon” lights, or high operating voltage gas discharge lights, might be useful in locating and removing broken glass around glass processing machines. At his job, the present inventor often worked around a glass processing machine, more particularly a glass container filling machine. A conveyor line passed empty glass jars to the glass container filling machine, the machine filled the jars with food, and a conveyor line passed the filled jars from the machine. It is inevitable, or virtually inevitable, that glass jars are broken during this operation. In addition to product safety and product spoilage concerns, broken jars also raised concerns about workplace safety and productivity. One evening, as the present inventor walked across a store parking lot, he noticed some broken glass in the parking lot that appeared to be glowing. The broken glass was very easy to see, even from a distance. The present inventor recognized that making broken glass “glow” in this manner would be very beneficial in locating and removing broken glass from around the glass container filling machine at his workplace. He studied the area and determined that light from a “neon” sign was giving the broken glass its glowing appearance. He revealed his idea to his employer, and his invention was used around the glass container filling machine.
Upon implementation of his invention, broken glass became much easier to locate and remove, down time for locating and removing broken glass decreased, and productivity increased.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a method and system for increasing safety and productivity associated with operating a glass processing machine.
It is a further object of the present invention to provide a method and system of the above type that makes it easier and faster to locate and remove broken glass from around a glass processing machine and conveyor line.
It is a still further

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Glass breakage detection using gas discharge lighting does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Glass breakage detection using gas discharge lighting, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Glass breakage detection using gas discharge lighting will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3119380

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.