Gimbal micropositioning device

Dynamic magnetic information storage or retrieval – Record transport with head stationary during transducing – Drum record

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

360109, G11B 555

Patent

active

060697717

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

The present invention relates to a gimbal micropositioning device, and more particularly to a high-resolution head positioning mechanism having a motor mounted between a head suspension and a gimbal carrying a slider bearing the head, the motor being operable to selectively position the head proximate predetermined locations on a rotatable disc.
The density, or radial spacing, between concentric data tracks on magnetic discs continues to increase, requiring greater precision in head positioning. In the past, head positioning was accomplished by operating an actuator arm with a large-scale motor, such as a voice coil motor, to position a head on a gimbal at the end of the actuator arm. The large-scale motor lacks sufficient resolution to effectively accommodate high track-density discs. Thus, a high-resolution head positioning mechanism is necessary to accommodate the more densely spaced tracks.
One promising design for high resolution head positioning involves employing a high resolution microactuator in addition to the conventional low resolution actuator, thereby effecting head positioning through dual-stage actuation. Various microactuator designs have been considered to accomplish high-resolution head positioning. These designs suggest implementation of small-scale motors using piezoelectric, electromagnetic, electrostatic, capacitive, fluidic, and thermal principles. However, the microactuators were integrated into the design of head suspensions, gimbals and sliders, and thereby had a substantial effect on the performance and design of those components of the disc drive system. For example, where the microactuator was implemented directly on the slider, the complexity of slider design was increased and noise generated by the microactuator and by signal paths to it was induced into the head. Locating the microactuator on the slider also tended to cause electrical interference between the motor and the transducing head due to the close proximity of the motor and transducer. Where the microactuator was to be formed by thin-film wafer techniques onto the gimbal, the entire gimbal assembly had to be redesigned because the microactuator required a silicon substrate support and conventional flexible gimbals were not constructed of silicon. Where the microactuator was implemented at the head mounting block (where the actuator arm connects to the head suspension load beam), high forces were required from the microactuator to move the mass associated with the head suspension at a speed (frequency) large enough to accommodate rapid track access. If the force was not great enough, the microactuator operated with lower natural frequency than was desirable, and track settling time was sacrificed. Therefore, the prior designs did not present ideal microactuator solutions.
There is a need in the art for a simple microactuator design to provide efficient high-resolution head positioning in a dual-stage actuation system, that can be implemented without requiring significant redesign of disc drive system components.


SUMMARY OF THE INVENTION

The present invention is a head positioning mechanism in a disc drive system. The disc drive system includes a rotatable disc, an actuator arm, and a suspension load beam connected to the actuator arm. The head positioning mechanism includes a motor attached to the suspension load beam. A gimbal has a first end attached to the motor. A slider, supporting a transducing head, is attached to a second end of the gimbal. Control circuitry generates electrical control signals to operate the motor to selectively adjust the radial position of the transducing head relative to the rotatable disc.


BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plan view of a portion of a disc drive, illustrating a head positioning system.
FIGS. 2A and 2B show top and side views, respectively, of a high-resolution head positioning mechanism according to a first embodiment of the present invention.
FIGS. 3A and 3B show top and side views, respectively, of a high-resolution head p

REFERENCES:
patent: 3678482 (1972-07-01), Billawala
patent: 3924268 (1975-12-01), McIntosh et al.
patent: 4374402 (1983-02-01), Blessom et al.
patent: 4605977 (1986-08-01), Matthews
patent: 4620251 (1986-10-01), Gitzendanner
patent: 4651242 (1987-03-01), Hirano et al.
patent: 4853810 (1989-08-01), Pohl et al.
patent: 4914725 (1990-04-01), Belser et al.
patent: 5021906 (1991-06-01), Chang et al.
patent: 5034828 (1991-07-01), Ananth et al.
patent: 5065268 (1991-11-01), Hagen
patent: 5079659 (1992-01-01), Hagen
patent: 5105408 (1992-04-01), Lee et al.
patent: 5177652 (1993-01-01), Yamaguchi et al.
patent: 5189578 (1993-02-01), Mori et al.
patent: 5255016 (1993-10-01), Usui et al.
patent: 5276573 (1994-01-01), Harada et al.
patent: 5521778 (1996-05-01), Boutaghou
patent: 5552809 (1996-09-01), Hosono et al.
patent: 5623461 (1997-04-01), Sohmuta
patent: 5657188 (1997-08-01), Jurgenson et al.
patent: 5745319 (1998-04-01), Takekado et al.
patent: 5764444 (1998-06-01), Imamura et al.
patent: 5781381 (1998-07-01), Koganezawa et al.
patent: 5793571 (1998-08-01), Jurgenson et al.
patent: 5796558 (1998-08-01), Hanrahan et al.
patent: 5805382 (1998-09-01), Lee et al.
patent: 5867347 (1999-02-01), Knight et al.
patent: 5896246 (1999-04-01), Budde et al.
patent: 5898541 (1999-04-01), Boutaghou et al.
patent: 5898544 (1999-04-01), Krinke et al.
"Silicon Micromachined Electromagnetic Microactuators for Rigid Disk Drives" by Tang et al, IEEE Transactions on Magnetics, vol. 31, No. 6, Nov. 1995.
"Magnetic Recording Head Positioning at Very High Track Densities Using a Microactuator-Based Two-Stage Servo System" by Fan et al., IEEE Transactions on Industrial Electronics, vol. 42, No. 3, Jun. 1995.
"A Flexural Piggyback Milli-Actuator for Over 5 Gbit/in.sup.2 Density Magnetic Recording" by Koganezawa et al, IEEE Transactions on Magnetics, vol. 32, No. 5, Sep. 1996.
"Transverse Mode Electrostatic Microactuator for MEMS-Based HDD Slider" by Imamura et al, IEEE 1996.
"An Experiment for Head Positioning System Using Submicron Track-width GMR Head" by Yoshikawa et al., IEEE Transactions on Magnetics, vol. 32, No. 5, Sep. 1996.
"Micro Electrostatic Actuators in Dual-Stage Disk Drives with High Track Density" by Tang et al., IEEE Transactions on Magnetics, vol. 32, No. 5, Sep. 1996.
"Piezoelectric Microactuator Compensating for Off-Track Errors in Magnetic Disk Drives" by Imamura et al, Advance Information Storage Systems, vol. 5, pp. 119-125.
"A Dual-Stage Magnetic Disk Drive Actuator Using a Piezoelectric Device for a High Track Density" by Mori et al., IEEE Transactions on Magnetics, vol. 27, No. 6, Nov. 1991.
"Dynamic Loading Criteria for 3-1/2 Inch Inline HDD Using Multilayer Piezoelectric Load/Unload Mechanism"by Kajitani et al., IEEE Transactions on Magnetics, vol. 27, No. 6, Nov. 1991.
"Design, Fabrication, and Testing of Silicon Microgimbals for Super-Compact Rigid Disk Drives" by Temesvary et al., Journal of Microelectromechanical Systems, vol. 4, N.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gimbal micropositioning device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gimbal micropositioning device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gimbal micropositioning device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1915172

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.